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INTRODUCTION

Descriptive geometry is one of the fundamental disciplines making up an 
engineering education.

It is concejmed with setting forth and justifying methods of constructing 
representations of three-dimensional forms in the plane, as well as methods 
of solving geometrical problems on the basis of given representations of 
these forms. As is known, three-dimensional forms can be represented not 
only in the plane, but on some other surface, for instance, a cylinder or 
sphere. The latter cases are studied in special branches of descriptive ge
ometry.

The representations constructed according to the rules of descriptive 
geometry enable us to visualize the shape of objects and their relative 
positions in space, to determine their dimensions, and to study their geo
metrical properties.

Descriptive geometry develops the student’s three-dimensional imagina
tion by making frequent appeals to it.

Finally, descriptive geometry provides a number of practical means for 
engineering drawings, ensuring their clarity and accuracy, and, hence, the 
possibility of manufacturing the represented objects.

The rules for constructing representations, set forth in descriptive ge
ometry are based on the method of projections.

It is standard practice to begin studying the method of projection with 
the construction of the projections of the point, since the construction of the 
projections of any three-dimensional form involves considering a number 
of points belonging to this form.





CHAPTER 1

THE METHOEf 
OF PROJECTING

Sec. 1. Central Projections

To obtain central projections we must take a plane (the plane ofprojection) 
and a fixed point not in the plane (the centre o f projection). The method of 
central projection is illustrated in Fig. 1 showing the plane P and the point S. 
Taking a point A and drawing through S  and A a straight line, we intersect 
the plane P at point ap. We then proceed in the same way with the points 
B and C. The points ap, bp, cp are central projections of the points A, B ,C  on 
the plane P: they are obtained as the intersections of the projecting lines (or 
rays called the projectors) SA, SB, SC with the plane of projection*.

If for a certain point D (Fig. 1) the projector turns out to be parallel to 
the plane of projection, then we conventionally consider that they intersect, 
but at a point at infinity. The point D also has a projection which is an 
infinitely distant point (dL).

Leaving the position of the plane P unchanged and taking a new centre 
Si (Fig. 2), we obtain a new projection of the point A (point ap i). If the 
centre S 2 is taken on the same projector SA, then the projection ap remains 
unchanged.

Hence, given the plane and the centre of projection, we can construct 
the projection of a point (Fig. 1), but having the projection of a point (for 
instance, ap) it is impossible to determine the position of the point A in 
space, since any point on the projector SA is projected into one and the 
same point. Obviously, for obtaining the unique solution some additional 
conditions are required.

The projection of a line can be constructed by projecting a number of its 
points (Fig. 3), all the projectors generating a conical surface** or being

♦The centre of projection is also called the pole o f  projection, and central projection 
is termed * polar projection\

♦♦That is why central projections are also called conical.
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located in one plane (for instance, when projecting a straight line not passing 
through the centre of projection, or a polygonal line and a curve all points 
of which lie in a plane coinciding with the projecting plane).

Obviously, the projection of a line is obtained as the intersection of the 
projecting surface with the plane of projection (Fig. 3). But, as is shown in 
Fig. 4, the projection of a line does not determine the line being projected, 
since the projecting surface may contain a number of lines which are pro
jected on the plane of projection into one and the same line.

From the projecting of points and lines we may pass over to projecting 
a surface and a solid.

Sec. 2. Parallel Projections

Let us now consider the method o f parallel projection.
When the centre of projection is a point at infinity, all the projections are 

parallel. They are drawn in the direction indicated by an arrow (see Fig. 5). 
The projections constructed in such a way are called parallel.

Thus, parallel projection may be considered as a particular case of central 
projection.

Hence, the parallel projection of a point is defined as the point of intersection 
of a projector drawn parallel to a given direction with the plane o f projection.

To obtain a parallel projection of a line it is sulficient to construct pro
jections of a number of its points and to draw through them a line (Fig. 6).

In this case all the projectors form a cylindrical surface, therefore parallel 
projections are also called cylindrical.

In parallel projections, the same as in central projections in general:
(1) for a straight line the projecting surface in the general case is a plane, 

and therefore a straight line is, in general, projected into a straight line;
(2) any point and line in space have its unique projection;
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Fig. 7 Fig. 8
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(3) each point on the projection plane may be the projection of a set of 
points if they are situated on a straight projector (the point dp in Fig. 5 is the 
projection of points Z>, Du D2);

(4) any line on the projection plane may turn out to be the projection of a 
set of lines if they are contained in a common projecting plane (Fig. 7: the 
line segment apbp serves as the projection of line segments AB and A\B\ of 
straight lines and the segment A2B2 of a plane curve); obviously, to obtain 
the unique solution in this case, some additional conditions are required;

(5) to construct the projection of a straight line it is sufficient to project 
two of its points and to draw a straight line through the obtained projections 
of these points;

(6) if a point belongs to a straight line, then the projection of the point 
belongs to the projection of this line (point K  in Fig. 8 belongs to a straight 
line, and the projection kp belongs to the projection of this line).

In addition to the above listed properties the following is valid for parallel 
projections:

(7) if a straight line is parallel to the direction of projecting (as, for in
stance AB in Fig. 8), then the projection of the line (and any of its segments) 
is a point (ap, or bp);

(8) a segment of a straight line parallel to the plane of projection is pro
jected on this plane true length (Fig. 8: CD is equal to cpdp as segments of 
parallel lines between parallel lines).

Later on we shall consider some more properties of parallel projections 
showing what relationships inherent in objects under considerations are 
retained in the projections of these objects.

Applying the methods of parallel projection of a point and a line, it is 
possible to construct parallel constructions of a surface and a solid.

Parallel projections are subdivided into oblique and orthogonal projections. 
In the first case the direction of projecting forms with the plane of projection 
an angle not equal to 90°, whereas in the second case the projectors are 
perpendicular to the plane of projection.

When considering parallel projections the viewer should be imagined as 
located at an infinite distance from the image. But in reality objects and 
their images are viewed from a finite distance, and the rays entering viewer’s 
eye form a conical, but not a cylindrical, surface. Hence, a more natural 
picture is obtained (provided certain conditions are observed) using a central 
projection, but not a parallel one. Therefore, when it is required to get a 
representation producing the same visual impression as the object itself, 
we usually resort to perspective projections which are based on central 
projecting.

But despite the above mentioned conditionality parallel projecting is 
widely applied. This is explained by the properties of parallel projections as 
well as by a comparatively greater simplicity of the constructions involved.
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Sec. 3. Monge’s M etlpd

Information and methods of construction required for representing space 
forms in the plane have accumulated gradually since ancient times. During 
long period of time plane representations were accomplished mostly in a 
visualized manner. With the development of engineering paramount impor
tance was acquired by the need of developing a method which would ensure 
accuracy and easiness in measuring graphical representations, i.e. ensure 
the possibility to locate each point of the representation relative to other 
points or planes and to determine the dimensions of line segments and figures 
by simple methods.

The accumulated rules and methods for constructing such representations 
were systemized and further developed by the great French mathematician 
G. Monge, the inventor of descriptive geometry, in his work “Essais sur les 
Geometrie descriptive” issued in 1779.

Gaspard Monge (1746-1818) is known in history as a great French 
.mathematician, engineer, a public man and a stateman during the period 
of Revolution of 1789-94 and the rule of Napoleon.

In 1768 Monge became professor of mathematics and in 1771 professor 
of physics at M6zieres; in 1780 he was appointed to a chair of hydrolics at 
the Lyceum in Paris (held by him together with his appointments at Mezieres) 
and was received as a member of the Acad6mie.

Monge wrote various mathematical and physical papers.
He took an active part in the measures for the establishment of the normal 

school and of the well-known ficole Polytechnique (Polytechnic school) and 
was at each of them professor for descriptive geometry.

Being one of the ministers (Minister of Marine) in the revolutionary 
government of France, Monge did much for its defence against foreign 
invaders, as well as for the victory of the revolutionary troops.

For a long time Monge had no possibility to publish his work containing 
the description of the method elaborated by him. It was considered so valu
able that it long was guarded as military secret. Only at the very end of the 
18th century the prohibition to publish his book was rescinded by the French 
government, and in 1799 Monge issued the mentioned work in which he 
gave a comprehensive description of his method.

On the fall of Napoleon he was deprived, as a Bonapartist, of all his hon
ours and excluded from the list of members of the reconstructed bodies. He 
was forced to hide, and ends his fife in poverty.

The method o f parallel projection (with orthogonal projections on two 
mutually perpendicular planes o f projection) invented by Monge was and 
remains the principal method applied for making engineering drawings, 
since it ensures obviousness, accuracy, and easiness in measuring represen
tations of various objects in the plane.

As a result of his researches, Monge arrived at that general method of the 
application of geometry to the arts of construction that later became known 
as descriptive geometry.
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The present course deals preferably with orthogonal projections, which 
are a particular case of parallel oblique projections. If the latter are used, it 
will be mentioned each time.

QUESTIONS TO CHAPTER 1

1. How do we construct the central projection of a point?
2. In what case does the central projection of a straight line represent a 

point?
3. What does the method of parallel projection consist in?
4. How is the parallel projection of a straight line constructed?
5. May the parallel projection of a straight line represent a point?
6. If a point belongs to a given straight line, then what are their relative 

positions?
7. In what case of parallel projection is a segment of a straight line pro

jected true length?
8. What is the Monge’s method?
9. How is the word aorthogonal’ deciphered?



CHAPTER 2

THE POINT •
AND THE STRAIGHT LINE

Sec. 4. A Point in the System F, H
As it was mentioned in Sec. 2, the projection of a point does not define 

the position of the latter in space, so to fully define this position some 
additional conditions are required. For instance, we are given the orthogonal 
projection of a point on the horizontal plane of projection and its distance 
from this plane is indicated by an elevation. The plane of projection is then 
taken for “the plane of zero level”, and the elevation is said to be positive 
if a point in space is above the plane of zero level, and negative if a point is 
below this plane.

This is the essence of the method o f projections with elevation. We are not 
going to study this method in further detail.

In our book we shall define the positions of points in space by their ortho
gonal projections on two and more planes of projections.

Figure 9 depicts two mutually perpendicular planes. Let us take them for 
the planes of projections. One of them denoted by the capital letter H  is 
horizontal, the other denoted by the capital letter F is vertical. The latter 
plane is called the vertical plane of projection, the plane H  being the horizontal 
plane of projection. The projection planes V and H  form the system F, H.

The line of intersection of the projection planes is called the axis of pro
jection. It divides either of the planes F  and H  into half-planes. This axis 
will be designated x , or in the form of a common fraction V/H. The projec
tion planes divide the space into four dihedral angles or quadrants, the first 
one being the quadrant whose faces are designated F and H  in Fig. 9.

The construction of the projections of a point A in the system F, H is 
illustrated in Fig. 10. Drawing from A perpendiculars to F  and H, we ob
tain the projections of the point A: the vertical projection designated a\ and 
the horizontal projection designated a.

The projecting rays (or projectors) respectively perpendicular to the 
planes Fand H  define a plane which is perpendicular to the planes and axis of
2-23012
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projection. This plane, when intersecting V and i/, forms two mutually per
pendicular straight lines a'l and al which intersect at point 1 on the axis of 
projection. Consequently, the projections o f a point are always situated on 
straight lines perpendicular to the axis o f projection and intersecting this axis 
in one and the same point.

If the projections a’ and a of a point A are given (Fig. 11), then, drawing 
perpendiculars—through a' to the plane V and through a to the plane 
H—we get a definite point which is the point of intersection of these per
pendiculars. Hence, two projections o f a point entirely define its position in 
space relative to a given system of projection planes.

Rotating the plane H  about the axis of projection through an angle of 
90° (as is shown in Fig. 12), we shall get a single plane, i.e. the plane of the 
drawing; the projections a' and a will be located on a single perpendicular 
to the axis of projection (Fig. 13). Let us agree to call the straight lines 
joining different projections of a point lines of recall.

As a result of bringing to coincidence the planes V and //, we obtain a 
projection drawing termed the orthographic representation (or Monge’s 
representation). This is a drawing in the system F, H  (or in the system of 
two orthogonal projections).

Passing over to such a representation, we lose the three-dimensional 
picture of arrangement of the planes of projection and a point. But, as we 
shall see later on, an orthographic representation ensures accuracy and 
convenience in measuring the represented elements along with simplicity 
of constructions. To get a three-dimensional picture from an orthographic 
representation one should possess a power of imagination. For instance* 
given Fig. 13, we have to imagine the picture represented in Fig. 10.

Since in the presence of the axis of projection the position of the point 
A relative to the planes of projections V and H  is determined, the line seg
ment a'l represents the distance of the point A from the projection plane Hy 
and the line segment a l, the distance of the point A from the plane V. 
We can also determine the distance of the point A from the axis of projection. 
It is represented by the hypotenuse of the right triangle constructed on a'l 
and al as its legs (Fig. 14) : laying off on the orthographic representation 
the line segment a'A equal to al and perpendicular to a'l, we get the true 
length of the hypotenuse A l representing the required distance.
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Fig. 13

We conclude with the following note: the line of recall connecting differ
ent projections of a point should be necessarily drawn, since the presence of 
this line makes it possible to determine the required position of a point.

Let us agree here to call Monge’s representation, as also the drawings 
based on Mongers method (see Sec. 3), by one word—the drawing, and under
stand it only in this sense. If used otherwise, the word “drawing” will be 
preceded by a corresponding attribute, say, a perspective drawing, an 
axonometric drawing, and so on.

Sec. 5. A Point in the System V, H, W
In a number of constructions and when solving problems, it becomes 

necessary to introduce other planes of projection in the system V, H. It is 
known that in mechanical engineering the drawings of machines and their 
parts contain not two but more representations (views).

Let us consider the introduction of one more plane of projection into 
the system V, H  (Fig. 15). This plane denoted by the capital letter W is 
perpendicular both to V, and to //, and is called the profile plane of projec
tion. Like the plane K, the plane W occupies the vertical position. In addition 
to the x-axis of projection, we obtain two more axes (the z- and y-axes) 
which are perpendicular to the x-axis. The point of intersection of all the 
three planes of projections is designated by the capital letter O. Since the 
x-axis is perpendicular to the plane W, the y-axis is perpendicular to the 
plane V, and the z-axis is perpendicular to the plane H , in the point O there 
coincide the projections of the x-axis on the plane W, of the >>-axis on the 
plane V and of the z-axis on the plane H.

Figure 15 shows how the planes H9 V, and W are brought into coincidence 
with the plane of the drawing. For the y-axis two positions are given (Fig. 17).

The pictorial representation in Fig. 16 and the drawing of Fig. 18 
contain the horizontal, vertical, and profile projections of a point A.

The horizontal and vertical projections (<a and a') are situated on one 
perpendicular to the x-axis, i.e. on the line of recall a'a, the vertical and
2*



20 DESCRIPTIVE GEOMETRY
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profile projections (a' and a") on one perpendicular to the z-axis, i.e. on 
the line of recall a!a".

The construction of the profile projection from the vertical and horizontal 
projections is shown in Fig. 17. We can take advantage either of a circular 
arc described from the point 0 , or of the bisector of the angle yOy±.

The distance of the point A from the plane H is measured on the drawing 
by the line segment a'l or by the line segment a"2i, the distance from the 
plane F  by the line segment al or a"3, and its distance from the plane W 
by the line segment a2 or a'3. Therefore the projection a" can also be con-* 
structed in the way shown in Fig. 18, i.e. by laying off on the line of recall 
joining the projections a' and a" a line segment equal to al to the right of 
the z-axis. This construction is preferable.

The distance from the point A to the x-axis is measured in space by the 
line segment A l (Fig. 19). But the line segment A l is equal to the line segment 
a"0  (see Sec. 2, item 8). Therefore, for determining the distance from the 
point A to the x-axis on the drawing (Fig. 20) we have to take the line seg
ment designated lx.

Analogously, the distance from the point A to the y~axis is represented 
by the line segment ly9 and the distance from the point A to the z-axis by thd 
line segment lz (Fig. 20).

Thus, the distances of a point from the projection planes and from th& 
axes of projections can be measured directly as definite line segments on th& 
drawing, taking into account its scale.

Let us consider a few examples of construction of the third projection 
of a point, using the two given projections. Let a point B be given by its 
vertical and horizontal projections (Fig. 21). Introducing a z-axis (in Fig! 
22 the distance 01 is arbitrary, if there are no particular conditions) and 
drawing through b' a line of recall perpendicular to the z-axis, we lay off 
on it to the right of this axis a line segment b"2 equal to bl.

Figure 23 shows how the projection c is constructed given the projection^ 
c' and c” (the construction is indicated by arrows).

QUESTIONS TO SECS. 4-5

1. What is the “F, H system” and how are the projection planes F and 
H called?

2. What is the axis of projection ?
3. How is the drawing of a point obtained in the F, H system?
4. What is the “system F, //, IF” and how is the projection plane IF 

called?
5. What is the line of recall?
6. How is it proved that a drawing containing two interconnected 

projections in the form of points represents a point?
7. How is the profile projection of a point constructed by its vertical 

and horizontal projections ?
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Sec. 6. Orthogonal Projections 
and a System of Rectangular Coordinates

The model representing the position of a point in the system V, H, IF 
(shown in Fig. 16) is analogous to a model which can be constructed if the 
rectangular coordinates* of this point are known, i.e. the numbers cor
responding to its distances from three mutually perpendicular planes which 
are called the coordinate planes. The straight lines along which the coordinate 
planes intersect are called the coordinate axes. The point of intersection of 
the coordinate axes is called the origin of coordinates, or simply the origin** 
and is designated by the capital letter O. For the coordinate axes we shall 
use the notation shown in Fig. 16.

Intersecting at right angles, the coordinate planes form eight trihedral 
angles, thus dividing space into eight parts called octants. Figure 16 re
presents one of the octants showing how the line segments defining the 
coordinates of a point A are obtained: perpendiculars are drawn from the 
point A to each of the coordinate planes. The first coordinate of the point 
A, called the abscissa, is expressed by the number obtained by comparing 
the line segment Aa" (or an equal line segment 01 on the x-axis) with the 
line segment taken for the scale unit. In the same way the line segment Aa' 
(or an equal line segment 02  on the y-axis) will define the second coordinate 
of the point A , called the ordinate; the line segment Aa (or an equal line 
segment 03 on the z-axis) will define the third coordinate of the point A, 
called the z-coordinate.

In the literal notation of coordinates the abscissa is designated with a 
lower-case letter x, the ordinate with y and the z-coordinate with z.

The parallelepiped constructed in Fig. 16 is said to be a coordinate 
parallelepiped of a given point A. The construction of a point by its coordi
nates is reduced to constructing the three edges of the coordinate parallele
piped which form a three-segment polygonal line (see Fig. 24). We have to 
lay off in succession the line segments O l, la, and aA, or 02, a"2, and a"A 
and so on, i.e. point A can be obtained by six different combinations each 
of which must contain all the three coordinates.

For pictorial representation of the three-segment polygonal line we use 
in Fig. 24 the so-called cabinet projection*** in which the x- and z-axes are 
mutually perpendicular, the ^-axis being the extension of the bisector of the 
angle xOz. In the cabinet projection the line segments laid off on the y-axis 
or parallel to it are shortened by half.

*Or the rectangular Cartesian coordinates. Cartesian system of coordinates may be 
rectangular or oblique; here we consider only a rectangular system of coordinates.

Rene Descartes (1596-1650), celebrated French philosopher and mathematician. 
C artesius is the latinized version of his name.

**The initial letter of the Latin word ‘origo’, the beginning.
***The cabinet projection belongs to oblique projections (for more detail see Sec. 75).
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Figure 16 shows that the construction of the projections of a point are 
accompanied by the construction of the line segments determining the co
ordinates of this point if the projection planes are taken for the planes of 
coordinates. Each of the projections of the point A is defined by two co
ordinates of this point. For instance, the position of the projection a is 
defined by the coordinates x  and y.

Suppose there given a point A (7, 3, 5); this notation means that the 
point A is defined by the coordinates x =  7, y  = 3, z — 5. If the scale for 
constructing the drawing is given or chosen, then (see Fig. 25) we take an 
arbitrary point O on the x-axis and lay off on this axis a line segment Ol 
equal to 7 units, and on the perpendicular through the point 1 the line 
segments al equal to 3 units and a'l equal to 5 units. Thus we obtain the 
projections a and a'. For this construction it is sufficient to take the x-axis 
only.

Taking the projection axes for the axes of coordinates, we can find the 
coordinates of the point provided its projections are given. For instance, in 
Fig. 18 the line segment Ol represents the abscissa of the point A , the line 
segment al its ordinate, and the line segment a'l its z-coordinate.

If only the abscissa is specified, then we get a plane parallel to the plane 
defined by the y- and z-axes. Indeed, this plane is a locus of points whose 
abscissas are equal to the specified quantity (plane P in Fig. 26).

If two coordinates are given, then a straight line is defined which is 
parallel to the corresponding coordinate axis. For example, having the 
abscissa and ordinate specified, we obtain a straight line parallel to the 
z-axis (the straight line AB in Fig. 26). AB is the line of intersection of two 
planes P and Q, where Q is the locus of points with equal ordinates. The line 
AB serves as the locus of points with equal abscissas and ordinates.

If all the three coordinates are specified, then a point is defined. Figure 
26 illustrates a point K obtained at the intersection of three planes of which 
P is the locus of points specified by an abscissa, Q is the locus of points 
specified by an ordinate, and R is the locus of points specified, by a z- 
coordinate.
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A point may be located in any of the eight octants which are numbered 
as in Fig. 27. Therefore we must know not only the distance of a given point 
from this or that coordinate plane, but also the direction along which this 
distance should be laid off, for this purpose the coordinates of points are 
expressed in algebraic numbers. For taking the coordinates we shall use a 
system of signs indicated in Fig. 27, i.e. we shall use the so-called “right- 
handed system”. The right-handed system is characterized by that the 
“positive” ray Ox is rotated in the direction of the “positive” ray Oy through 
an angle of 90° anticlockwise (provided we view the plane xOy from 
above).

In the system called “left-handed” the “positive” ray Ox is directed to 
the right from the point O.

When representing solids we usually take for coordinate planes not the 
planes of projection but a system of some three mutually perpendicular
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planes associated directly with a given solid, for instance, the faces of a right 
parallelepiped, two faces and the plane of symmetry, etc. Such system of 
coordinates is sometimes termed “inside”.

Sec. 7. Points in Quadrants and Octants
In Sec. 4 it was said that, when intersecting, the planes V and H  form 

four dihedral angles which are called quadrants or quarters of space, which 
are conventionally numbered as shown in Fig. 28. The axis of projection 
divides either of the planes H  and V into half-planes conventionally de
signated H  and —H^V  and — V. If, for instance, a point is located in the 
second quadrant, then its horizontal projection is situated on — //, and the 
vertical projection on V.

Henceforward, we shall take the drawing of Fig. 13 as the base for 
constructing the drawing of a point contained in any of the four quadrants.

When considering orthogonal projections, it is assumed that the viewer 
is located in the first quadrant at an infinite distance from the planes of 
projection V and H. The planes of projection are considered to be opaque, 
therefore visible are only points located in the first quadrant and also on the 
half-planes V and H.

Figure 13 gives the drawing for the case when a point is situated in the 
first quadrant (see Fig. 29). If the point is equidistant from V and H , then 
a'l =  al.

Figure 30 shows a point B located in the second quadrant, i.e. above 
—H  and behind V (Fig. 29). The point B is closer to V than to — H: in the 
drawing bl <  b'l. Shown in the same drawing is a point C which is equi
distant from — H  and V : the projections cf and c coincide.

A point D situated in the third quadrant is shown in Fig. 31. We see 
its horizontal projection above the axis of projection, while the vertical 
projection is below the axis. Since dl >  d 'l, the point D is situated at a 
greater distance from — V than from — H. Figure 32 gives points E  and F
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situated in the fourth quadrant. The point is nearer to H , than to — V; 
e'] <  el (Fig. 29). The point F is equidistant from — V and H : f l  = f ' l .

Figure 33 represents (in the system V, H) points A and 5  situated sym
metrically about the plane H. In the drawing (Fig. 33, right) the horizontal 
projections of such points coincide, the vertical projections being equidistant 
from the axis of projection: a'l = b'l.

In the drawing practice use is made of the first and third quadrants. For 
more detail see Sec. 41.

As is shown in Fig. 27, the coordinate planes, intersecting at right angles, 
form eight trihedral angles called octants which are numbered according 
to the drawing. As is seen from Fig. 28, the quadrants are numbered as I to 
IV octants.

Using for determining coordinates the system of signs indicated in Fig. 
27, we get the following table:

Octant
Signs of Coordinates

Octant
Signs of Coordinates

X y z X y -

I + + + V + +
11 + - + VI - — -r

III + - - VII - - -

IV + + — VIII — +

For instance, the point (—20, +15, —18) is found in the eighth octant. 
The planes are brought into coincidence according to Fig. 34, i.e. the plane 
W  is turned anticlockwise if the plane H  is viewed in the direction from 
+ z to O.

Figure 34 (right) gives the drawings of two points: A situated in the first 
octant, andG located in the seventh octant; the projections of one and the 
same point cannot coincide in these octants. For the rest of the octants 
two or all the three (for the second and eighth octants) projections of one 
and the same point can appear to be coincident.

QUESTIONS TO SECS. 6-7

1. What are the rectangular Cartesian coordinates of a point?
2. In what succession are the coordinates written in the notation of a 

point?
3. What are the quadrants or the quarters of space?
4. What are the octants?
5. What signs have the coordinates of a point located in the seventh 

octant?
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6. What is the difference between the “right-handed” and “left-handed” 
systems of coordinates?

7. What is the difference between the drawings of two points one of which 
is located in the first quadrant, and the other in the third?

Sec. 8. Forming Additional Systems 
of Projection Planes

Until now we have dealt with two systems of projection planes: F, H  and 
F, H , W. But if necessary, we can form other systems as well. For instance, 
introducing into the system V, H  a plane S  perpendicular to the plan,e / /  
(Fig. 35), besides the system F, H  with the projections a' and a of point A , 
we get one more system S', H  with the projections as and a of the same 
point A .

Is a new system F, S  also formed in this case? The answer is negative, 
since the planes F  and S  are not perpendicular to each other.

The plane H  enters both systems F, H  and S, H. Therefore, the projection 
a of point A refers also to the system S , H  (see Fig. 35). When projecting 
the point A on the plane S, we get the point as at a distance as2 from the 
plane H  which is equal to Aa and a'L

In Figure 36 the planes F, H  and S  are shown coincident with the plane 
of the drawing; the drawing thus obtained is given in Fig. 37. In addition 
to the axis F//7, one more axis SI His introduced. This axis is chosen accord
ing to the conditions of a concrete assignment. From the point a a line of 
recall is drawn perpendicular to the axis S/H  on which the line segment as2 
is laid off. This segment is equal to the line segment a'l, i.e. to the distance 
in space from the point A to the plane H .

Figure 38 shows a drawing in which, along with the system F, H , one 
more system (F, T) is given, i.e. into the system F, H  an additional plane 
T  is introduced which is perpendicular to F. Now both systems contain the 
plane F. Therefore the distance of the point A from this plane is retained, 
hence in the drawing the line segment at2 must be equal to the line segment 
al.

Obviously, the plane W  (Fig. 15) may be interpreted as an additional 
plane drawn perpendicular both to F and H. In this case, aside from the 
system F, H  we usually consider the system F, W. By analogy with Fig. 38, 
the drawing of Fig. 22 might be transformed into one shown in Fig. 39 (left), 
where b"2 is equal to bl. And if we use an auxiliary straight line as in Fig. 17 
(the extended bisector of the angle xO z\ then the construction takes the 
form shown in Fig. 39 (right). May we proceed analogously when construct
ing, for instance, the projection as (Fig. 37) or at (Fig. 38)? Yes, and it is 
shown in Fig. 40. But here, of course, the angle equal to 45°, as in Fig. 17, 
is not obtained. As is seen from the drawings of Fig. 40, we have to draw 
the bisector of the angle formed by the axes V/H  and S/H  (Fig. 40, left) 
and the axes V/H  and F/77 (Fig. 40, right).
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But, as it was stated in Sec. 5, the constructions shown in Fig. 39 (left) 
and in Figs. 37 and 38 are preferable.

Below (Sec. 33) we shall come across other examples illustrating the intro
duction of additional planes for forming a required system of projection 
planes.

We have denoted by as and at the projections obtained on the additional 
planes of projection (say, on S  or T). In this connection, it would be appro-
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priate to use the notation ahy av> aw (as in Fig. 41) instead of a, a', a". But for 
the projections on the planes H> V, W we shall use mainly the conventional 
notation; for instance, a, a\ a" which are the projections of a point A on 
these planes of projection.

Sec. 9. Drawings Without Axes of Projection

Henceforward, along with the drawings containing the axes of projection* 
we shall use drawings without indicating the axes.

From the comparison of the drawings given in Fig. 42 it follows that in 
one case the position of the planes V and H  is established by drawing the line 
of their intersection, and the distances of the point A from these planes are 
thus defined. Considering the second drawing of Fig. 42, we see that there 
is no question as to the distances of the point A from the planes V and //, 
since the axis of projection is absent. Under consideration is a point A spe
cified by its projections irrespective to the location of the projection planes. 
In this case the line of recall acquires greater importance, therefore it should 
be carefully constructed.

Is it possible, having a drawing without an indicated axis of projection, 
to introduce this axis and thus to specify the distances of a point from the 
planes V and H  chosen arbitrarily? Yes, it is possible. When introducing 
the axis, it should be drawn perpendicular to the line of recall at any point 
on this line (if there is no specific condition). This leaves the position of the 
projections unchanged. Indeed, by drawing the axis of projection we choose 
a certain position of the dihedral angle VH with respect to a given point A 
(Fig. 43). An upward or a downward displacement of the axis in the drawing 
corresponds to a translation in space of the dihedral angle VH in the direc
tion of the bisector plane of the dihedral angle* adjacent to the angle VH 
(V\H\ in Fig. 43 is the new position of the dihedral angle VH).

The introduction of the projection axis (which is usually done in accor
dance with a certain condition) was shown in Figs. 37 and 38: the axes 
S/H  and V/T. They were needed for construction purposes: from them the 
dimensions were measured. If considered in their initial meaning, i.e. as the 
lines of intersection of the projection planes, the axes in general help to 
form a three-dimensional picture from the drawing.

Reference bases for measuring the dimensions are essential components 
of mechanical drawings. The choice of the bases is not restricted, their posi
tions being determined proceeding from necessity and advisability.

Figure 44,a shows how to find the difference between the distances of the 
points A and B from the projection planes H , V, and W. In Fig. 44,b the 
left drawing is given with the projection axes, the right one without them.

In this example the difference between the distances of the points from

♦The bisector plane o f  a dihedral angle is a plane passing through the edge of the 
dihedral angle and bisecting it.
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Fig. 44

the plane H is determined by the line segment a'5 equal to a'l — b'2 or to 
a"7; from the plane V by the line segment b6 equal to b2—al or to b"7; 
from the plane W by the line segment b'5 equal to a'3—b'4 or a6.

QUESTIONS TO SECS. 8-9

1. How is a system of projection planes formed?
2. What condition must be satisfied by the plane introduced into the sys

tem V, H  as an additional plane of projection?
3. How is the projection of a point specified in the system F, H  construct

ed in the plane S  which is perpendicular to the plane H  ?
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4. Can we determine the distances of a point from the projection planes 
in the presence of the axis of projection?

5. How should a drawing be understood in the absence of the axis of 
projection?

6. What is the purpose of the axes S/H  and VIT in Fig. 40?
7. How is the distance of a point from the planes H  and F  determined in 

the drawing in the F, H  system?

Sec. 10. The Projections of a Line Segment

Suppose we are given the vertical and horizontal projections of points 
A  and B (Fig. 45). Joining the like projections of these points, we get the 
vertical (<a'b') and the horizontal (ab) projections of the line segment AB 
(see Sec. 2, Item 5).

May we assert that this drawing (Fig. 45) represents just a line segment? 
The answer is “Yes ”. If we imagine that through a'b' and ab projecting planes 
(i.e. planes perpendicular to F  and H, respectively) are drawn, then they 
will intersect along a straight line, AB being its segment (Fig. 46). Further
more, a point specified by its projections on a'b' and ab belongs to the line 
segment AB.

Given in Fig. 47 is a drawing of a segment AB in the system F, H, W. 
The projections a" and b" are constructed in the way illustrated in Fig. 18 
for one point A.

The points A and B are located at different distances from each of the 
planes F, H, W, i.e. the line AB is parallel to none of them, none of the pro
jections of the line being parallel or perpendicular to the axis of projection. 
Such a straight line is termed an oblique line.

Each of the projections is shorter than the segment itself: a'b' <  AB, 
ab <  AB, a"b" -< AB. Denoting the angles between the line and the planes 
H , F, and W by a, and y, respectively, we get

ab =  AB cos a, a'b' = AB cos /?, a"b" =  AB cos y,
If ab = a'b' = a"b", then the line forms equal angles (% 35°) with the 

projection planes (see Sec. 13), each of the projections of the line being 
inclined to the corresponding axes of projection or to the lines of recall at 
an angle of 45°.

Indeed, if (Fig. 48) a'b' =  ab and a'b' = a"b", then the figure a'b'ba is an 
equilateral trapezium and b'l = b2, whence b"3 = a"3, i.e. the angle 
a"b"3 =  45°, and since the figure a'b'b"a" is a parallelogram, either of the 
angles b'a'l and ba2 is equal to 45°.

How is, for instance, the profile projection of a line segment constructed 
on a drawing having no axes of projection? The construction is shown in 
Fig. 49, where, along with the initial drawing of the segment AB of an obli-
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que line (left), we see the use of an auxiliary line drawn at an angle of 45° 
to the direction of the line of recall b'b (middle), and the construction using 
the difference between the distances of the points A and B from the plane 
V, i.e. the line segment al (right). Given, say, the projection a" (on the line 
of recall a'a"), we lay off a"2 equal to al and find the position of the projec
tion b" by drawing from the point 2 a perpendicular to the line of recall 
joining b' and b".

Sec. 11. Particular Positions of a Straight Line 
Relative to the Projection Planes

A straight line may occupy particular positions relative to the projection 
planes. Let us consider them according to the following two characteristics:

A. A line is parallel to one projection plane.
B. A line is parallel to two projection planes.
In the first case one of the projections of the line segment is equal to the 

segment itself. In the second case two projections of the line segment are 
equal to the segment itself*.

A. A Line Parallel to One Projection Plane
1. A line is parallel to the plane H  (Fig. 50). In this case the vertical pro

jection of the line is parallel to the axis of projection and the horizontal pro
jection of a segment of this line is equal to the segment itself: ab =  AB. Such 
line is called horizontal.

If, for instance, the projection a'b' coincides with the axis of projection, 
then the line segment AB is contained in the plane H.

2. A line is parallel to the plane V (Fig. 51). In this case its horizontal 
projection is parallel to the axis of projection and the vertical projection of 
the segment of this line is equal to the segment itself: c'd' = CD. This line 
is called vertical.

If, for instance, the projection cd coincides with the axis of projection, 
then this corresponds to the position of the segment CD contained in the 
plane V.

3. A line is parallel to the plane W (Fig. 52). In this case the horizontal 
and vertical projections of the line are situated on a single perpendicular to 
the axis of projection Ox, and the profile projection of this line is equal to 
the segment itself: e”f ” = EF. This line is termed profile.

May we consider that the drawings like those shown in Figs. 50 and 51 
represent segments of straight lines? Yes; the proof is the same as for an 
oblique line (Fig. 46).

!Of course, taking into consideration the scale of a drawing.
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But if in a drawing made in the system F, H both projections are perpen
dicular to the axis of projection, then the projecting planes drawn through 
ef and e'f' merge into one plane. In this case the original may be not only a 
straight line, but a plane curve as well (see Fig. 53).

B. A Line Parallel to Two Projection Planes
1. A line is parallel to the planes F and H  (Fig. 54), i.e. perpendicular 

to the plane W. The projection of the line on the plane W represents a point.
2. A line is parallel to the planes H  and W (Fig. 55), i.e. perpendicular 

to the plane F. The projection of the line on the plane W represents a line- 
segment equal to cd.

3. A line is parallel to the planes F and W (Fig. 56), i.e. perpendicular 
to the plane H. The projection of the line on the plane W will be a line 
segment parallel and equal to e'f'.

Figure 57 shows the positions of the considered lines*.
The projections of line segments are usually constructed with the end

points indicated. If for this or that reason an indefinite portion of a straight 
line is shown, then, practically, also a line segment is represented, but in 
this case its end-points are not indicated. In this event we may designate 
each projection only by one letter referring it to a point on the line (Fig. 58): 
“a straight line passing through the point A ”.

Let us consider the left drawing of Fig. 59. About the line shown in it 
we may say only that it passes through the point L  and is parallel to the 
plane H. But in all other respects the position of this line is not defined. 
It would be completely defined if the horizontal projection were given, i.e. 
a projection on the line with respect to which the given line is parallel.

But if we have a straight line specified by two its points (for instance, a 
line segment specified by its end-points), then it is possible to determine the 
exact position of this line even if its projection on the plane to which it is 
parallel is not given. For example, if a line segment AB is given (Fig. 59, 
right), then we can determine not only parallelism of this line to the plane 
//, but also the fact that the point A is farther from the plane F as compared 
with the point B.

Sec. 12. A Point on a Straight Line.
Traces of a Line

Figure 60 shows the drawing of an oblique line passing through the 
point A. If it is known that the point B belongs to this line and that the 
horizontal projection of the point B is situated at point b, then the projection 
b' is determined in the way shown in Fig. 60.

In Figure 61 a point is constructed on a profile line. Suppose the projec
tion c' of this point is given and it is required to find its horizontal projec-

*These straight lines are sometimes called “projecting lines”.
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tion. The construction is carried out with the aid of the profile projection 
a"b" of the line segment AB taken on a profile line. All necessary construc
tions are shown in the figure by arrows. We first determine the projection 
c" and then the required projection c.

One of the properties of parallel projection is that the ratio of line seg
ments is equal to the ratio of their projections (Fig. 62): since

L x ?  CpDp

Aap, Ccp, and Bbp are parallel lines. Analogously, the ratio of the line seg
ments on the projection of a line is equal to the ratio of the line segments 
on this line. If a point bisects a line segment, then the projection of this 
point also bisects the projection of the line segment, and vice versa.

Whence it follows that the division of the projections a'b' and ab by 
the points d  and c, respectively, shown in Fig. 61 corresponds to the division
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of the line segment AB in space by the point C in the same ratio. This may 
be used for a simpler construction of a point on a profile line. If (the same 
as in Fig. 61) the projection c' is given on the projection a'b' (Fig. 63), then, 
obviously, we have to divide ab in the same ratio in which the point c' 
divides the projection a'b'. Drawing from the point a an auxiliary line, we 
lay off on it al = a'c' and 7-2 = c'b'. We draw then a straight line b2 and 
through the point 7 a straight line to intersect ab at point c. This point 
represents the required horizontal projection of the point C belonging to 
the line segment AB.

Figure 64 illustrates an example of dividing a line segment in a given 
ratio.

The line segment CD is divided in the ratio 2 : 5. An auxiliary line is 
drawn from the point c on which seven (2+5) equal segments of an arbitrary 
length are laid off. Drawing the line segment d7 and through the point 2 
a straight line parallel to it, we get a point k , and ck : kd =  2 : 5; then we 
find k'. The point K  divides the line segment CD in the ratio 2 : 5.

Figure 65 shows points M  and N  at which a straight line specified by 
the segment AB intersects the planes of projection. These points are called 
the traces: point M  is the horizontal trace o f the line, and point N  its vertical 
trace.

The horizontal projection of the horizontal trace (point m) coincides 
with the trace itself, and the vertical projection of this trace m' lies on the 
axis of projection. The vertical projection of the vertical trace ri coincides 
with the point N, and the horizontal projection n lies on the same axis of 
projection.

Consequently, to find the horizontal trace we have (see Fig. 66) to 
extend the vertical projection a'b' to intersect the VjH axis and to draw 
a perpendicular through the point m' (which is the vertical projection of 
the horizontal trace) to the V/H  axis to intersect the extended horizontal 
projection ab. Point m is the horizontal projection of the horizontal trace; 
it coincides with the trace itself (—is the sign of coincidence).
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Fig. 67
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The vertical trace is found in the following way: extend the horizontal 
projection ab to intersect the V/H  axis; through the point n (the horizontal 
projection of the vertical trace) draw a perpendicular to intersect the 
extended vertical projection a'b'. The point ri thus obtained is the vertical 
projection of the vertical trace; it coincides with the trace itself.

By the positions of the points M  and N  we can judge to which quadrants 
the given line refers. In Figure 65 the straight line AB passes through the 
fourth, first, and second quadrants.

A straight line has no trace in a plane of projection if it is parallel to this 
plane.

In Figure 67 a straight line pierces not only the planes H and V9 but also 
the plane W . Point P is the profile trace of the line, i.e. the trace on the 
profile plane of projection. This trace coincides with its own projection on 
the plane W9 its vertical and horizontal projections lying on the z- and y~ 
axes, respectively.

In this case the line passes beyond the point P through the fifth octant, 
and meeting then the plane V, enters the sixth octant; leaving the first 
octant, the line enters the fourth octant*.

The corresponding drawing is given in Fig. 67 (right). The straight line 
is shown in the first octant (the projections mpr mfp \  and m"p") and in the 
fifth octant (the projections pn, p'n' and p"n").

If the projection planes are taken for the coordinate planes, then the 
coordinate z of the horizontal trace of the line is equal to zero, the coordinate 
y of the vertical trace is equal to zero, and the coordinate x  of the profile 
trace is equal to zero.

*Let us agree here to use continuous lines for those projections of drawings which 
correspond to the position of a line segment located in the first quadrant or in the first 
octant.
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The traces of a profile line (Fig. 68) can be constructed in the following 
way (Fig. 68, right): we construct the profile projection (<a"b"), determine the 
positions of the profile projections of the horizontal trace (m") and the 
vertical trace (n'% and then find the positions of the remaining projections 
of these traces (the successive stages of construction are shown by arrows).

QUESTIONS TO SECS. 10-12

1. What is the position of an oblique line relative to the projection 
planes?

2. How is it proved that a drawing containing two interconnected pro
jections in the shape of line segments represents exactly a line segment?

3. How is the relation between a projection of a line segment and the 
line segment itself expressed?

4. How is a straight line situated in the system F, H , W if all three 
projections of its segment are equal in length?

5. How to construct the profile projection of a segment of an oblique 
line given its vertical and horizontal projections?

6. How is the construction of the preceding question carried out on a 
drawing without the axes of projection?

7. What positions of a straight line in the system F, //, W are considered 
to be particular?

8. What is the position of the vertical projection of a line segment if its 
horizontal projection is equal to the line segment itself?

9. What is the position of the horizontal projection of a line segment if 
its vertical projection is equal to the line segment itself?

10. What is the property of parallel projection concerning the ratio of 
line segments ?

11. How is a line segment divided on the drawing in a given ratio?
12. What is the trace of a straight line on a projection plane?
13. What coordinate is equal to zero: (a) for a vertical trace of a straight 

line, (b) for a horizontal trace of a straight line?
14. Where is the horizontal projection of a vertical trace situated?
15. Where is the vertical projection of the horizontal trace of a straight 

line located?
16. Is it possible for a straight line in the system F, //, W to have traces 

on each of these planes merging into one point?
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Sec. 13. Constructing the True Length of a Segment 
of an Oblique Line and the Angles of Inclination 

of a Straight Line to the Projection Planes V and H
Examining the top picture of Fig. 69 we may conclude that the line seg

ment AB is the hypotenuse of a right triangle AB1 in which one leg is equal 
to  the projection of the line segment (A1 = ajbp), and the other leg is equal 
to  the difference of the distances of the end-points of the segment from the 
projection plane P.

If the coordinates defining the distances of the end-points of the segment 
from the projection plane have different signs (Fig. 69, bottom), then an 
algebraic difference is meant:

BJ =  Bbp — ( — Aap) = Bbp + Aap.
The angle between a straight line and a projection plane is defined as an 

angle formed by the line with its projection on this plane. This angle is one of 
the interior angles of the right triangle constructed for determining the true 
length of the line segment.

Obviously, knowing from the drawing its legs, we can construct the 
triangle at any place of the drawing area. Figure 70 illustrates the construe-
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tion applied by G. Monge: laid off from point 7 is a segment a[l equal to the 
projection ab, and the hypotenuse a[b' representing the true length of the 
segment AB is drawn. The angle with the vertex at point a[ is equal to the 
angle between AB and the plane 77.

In Figure 71 (left) the length of the line segment AB and the angle formed 
by the line AB with the plane 77 are determined from a right triangle con
structed on the projection ab with bB as its second leg which is equal to 
b'l. As is obvious, AB =  aB.

In Figure 71 (right) the length of the line segment and the angle formed 
by the line AB with the plane V are determined from the right triangle 
constructed on the projection a'b' (a'A = a2). AB *= b'A.

Must the angles a and f  satisfy any condition in case of an oblique line? 
Yes, either of them must be acute. Moreover, for an oblique linea+^ <  90°. 
Indeed, (Fig. 72) as is obvious from the right triangle n'm'm, b + f =  90°. 
But in the triangles n'm'm and n'nm having a common hypotenuse n'm the 
leg n'm' is longer than the leg n'n and, consequently, b >  a. Substituting 
a instead of b into 5+/J = 90°, we get <%+/? <  90°.

Consider right-angled triangles abB and b'a'A (Fig. 71). In either of 
them the hypotenuse represents the true length of a line segment, one of the 
legs being the projection of this segment. The other leg is equal to the differ
ence of the distances of the end-points of the segment from the corresponding 
plane of projection (bB = b'l = the difference of the distances from 7/, 
and a'A = a2 =  the difference of the distances from V). Besides, one of 
these triangles contains the angle between the segment and the plane 77 
(the angle a), and the other the angle between the segment and the plane V 
(the angle /S).

In this case we have determined the hypotenuse and the angle, knowing 
the legs of a triangle. But we may come across such a situation: given the 
hypotenuse and the angle, required: to determine the legs (i.e. given the 
true length of a segment and the angles formed by it with the projection planes; 
it is required to construct the projections o f this segment).

Suppose (Fig. 73) that AB is a given line segment (it corresponds to the 
hypotenuses aB and b'A in Fig. 71). We construct on it as on the diameter 
a circle. Taking the point A for the vertex, we construct the angle a (i.e. 
the given angle with the plane 77) and the right triangle A1B. From the 
comparison of this triangle with the triangle abB (Fig. 71) it follows that 
the leg A1 represents the horizontal projection of the segment AB, while the 
leg B1 the difference between the distances of the end-points of the segment 
AB from the plane 77.

Let us also construct (Fig. 73) the right triangle A2B using the same 
hypotenuse AB and the given angle f  with the projection plane V9 and 
compare it with the triangle b'a'A shown in Fig. 71. Obviously, the leg B2 
represents the vertical projection of the given segment, and the leg A2 the 
difference between the distances of the end-points of the segment from the 
plane V.

Let us now make a drawing (Fig. 74). Laying off on the line of recall
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b'b from the point b' a line segment b'l equal to B1 (see Fig. 73), we draw 
through point 1 a straight line perpendicular to b'b. Intersecting this line 
with an arc described from V as centre (its radius must be equal to the 
vertical projection, i.e. to the segment B2\ we get the point a'. To find the 
horizontal projection a we intersect the line of recall drawn through the 
point a' by an arc whose radius is equal to A1 (see Fig. 73). In this case the 
following must be obtained: a'a—bl =  A2.

Figure 74 gives only one position of the line segment. There are seven 
other positions at the initial point B. The reader is welcome to represent 
the segment AB in all these positions as well.

An example of determining the distance from the point A to the point 
O is given in Fig. 75. First the projections a'o' and ao of the required segment 
are constructed (the point O is represented by its projections o' and 6). 
Then the triangle oaA is constructed one of whose legs is the projection oa, 
and the other the line segment a A  equal to a'1. The required distance is 
determined by the hypotenuse oA.

Now we can determine the angle formed by the straight line inclined 
at equal angles to the planes H , F, and W  with these planes. This angle was 
considered in Sec. 10 and its magnitude (^35°) was indicated. It can be 
determined, for instance, from Fig. 76: the projections a'b' and ab are equal 
to each other, and either of the angles a'b'l and a'ab is equal to 45° (see 
Sec. 10).

The required angle is determined from the right-angled triangle abB 
in which the leg bB = b'l. If we put b'l to be equal to unity then ab = 
= a'b' = Y2 and the angle a % 35°15'. The angles between this line and the 
planes F and W are equal to the angle a.

If we supplement the system F, H  with the system S9 H  (see Sec. 8), 
taking S  perpendicular to H  and parallel to the line segment given on the 
drawing, then, obviously, the projection of this segment on the plane S  will 
represent its true length and the angle with the plane H.

Suppose (Fig. 77) it is required to determine the true length of the line
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segment AB and its angle with the plane H. The system F, H is supplemented 
with a plane S  perpendicular to H  so that S  is parallel to AB. Thus, we have 
an additional system S , H  in which AB is parallel to S  (the axis S/H  is 
parallel to ab); in this case the projection asbs represents the true length of 
the line segment AB.

Sec. 14. The Relative Positions 
of Two Straight Lines

Parallel Lines. One of the properties of parallel projecting reads: the 
projections of two parallel straight lines are parallel to each other. If (Fig. 78) 
the straight line AB is parallel to the line CD, then the projecting planes 
Q and R are parallel to each other. The intersection of these planes with the 
projection plane P yields the projections apbp and cpdp which are parallel to 
each other.

But though apbp is parallel to cpdp (Fig. 78) the straight lines for which 
apbp and cpdp are the projections are not necessarily parallel to each other: 
for instance, the line AB is not parallel to the line CiDi.

From the mentioned property of parallel projecting it follows that the 
horizontal projections of parallel lines are parallel to each other, their vertical 
projections are parallel to each other, and their profile projections are parallel 
to each other.

Is the converse true, i.e. will two lines in space be parallel if their like 
projections on the drawing are pairwise parallel? Yes, if we are given 
parallel projections of these lines on each of the three projection planes: 
//, F, and W. But if we are given parallel projections of the lines only on two 
projection planes, then by this the parallelism of straight lines in space is 
always verified for oblique lines, and may be verified for lines which are 
parallel to one of the projection planes.

An example is given in Fig. 79. Though the profile lines AB and CD are 
specified by the projections ab, a'b' and cd, c'd' which are pairwise parallel.
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Fig. 80 Fig. 81

but the lines themselves are not parallel, which is seen from the relative 
positions of their profile projections constructed by the given projections.

Thus, the problem was solved with the aid o f the projections o f the given 
lines on the projection plane relative to which the lines are parallel.

Figure 80 illustrates the case when it is possible to find out that the profile 
lines AB and CD are not parallel to each other without resorting to construe- 
tion of the third projection: it is sufficient to draw one’s attention to the 
interchange of the designating letters.

If it is required to draw through a given point A a straight line parallel 
to a given line LM, then (see Fig. 81, left) the construction is reduced to 
drawing through the point a' a line parallel to Vm\ and through the point a 
a line parallel to Im.

In the case shown in Fig. 81 (right) two parallel lines are contained in 
a common projecting plane perpendicular to the plane H. That is why the 
horizontal projections of these lines are situated on the straight line.

Intersecting Lines. I f  straight lines intersect, then their like projections 
intersect at a point which is the projection o f the point of intersection o f these 
lines.

Indeed, if the point K  (Fig. 82) belongs to both lines AB and CD, then 
the projection of this point must be the point of intersection of the projections 
of these lines.

The conclusion that the lines given in the drawing intersect may be drawn 
always with respect to oblique lines irrespective of the fact whether the 
projections are given on three or two projection planes. The necessary and 
sufficient condition in this case is only that the points of intersection o f the like 
projections must lie on a single perpendicular to the corresponding axis o f  
projection (Fig. 83), or in case of a drawing without the projection axis 
(Fig. 84), these points must lie on the appropriate line of recall. But if one of 
the given lines is parallel to a projection plane and the drawing has no pro
jections of the lines on this plane, then we have no right to assert that such 
lines intersect even if the above-stated condition is fulfilled. For instance,, 
in Fig. 85 the lines AB and CD, of which CD is parallel to the plane W>
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Fig. 88

do not intersect. This can be proved by constructing the profile projections 
or by applying the rule for dividing line segments in a given ratio.

The intersecting lines shown in Fig. 84 are contained in a common pro
jecting plane perpendicular to the plane F . That is why the vertical projec
tions of these lines are located on one straight line.

Skew Lines. Skew lines do not intersect and are not parallel to each other. 
Figure 86 shows two skew lines neither of which is parallel to any plane of 
projection. Although their like projections intersect, but the points of their 
intersection cannot be joined with a line of recall parallel to the lines of 
recall /'/ and m'm, i.e. the lines do not intersect. The lines shown in Figs. 79, 
80, and 85 are also skew lines.

How must we consider the point of intersection of the like projections 
of skew lines? It represents the projections of two points one of which belongs 
to the first line, and the other to the second of these skew lines. For instance, 
in Fig. 87 the point with the projections k' and k belongs to the line AB, 
and the point with the projections /' and / to the line CD. These points are 
equidistant from the plane F, but their distances from the plane H  are 
different: the point represented by the projections /' and / is farther from the 
plane H than the point represented by the projections k' and k (see Fig. 
88).

The points with the projections m \ m and ri, n are equidistant from the 
plane //, but their distances from the plane F are different.

The point represented by the projections /' and / and belonging to the 
line CD hides the point on the line AB with the projections k' and k when 
projected on the plane H . The corresponding direction of viewer’s sight is 
indicated with an arrow. When projected on the plane F, the point repre
sented by the projections ri and n and belonging to the line CD hides the 
point with the projections m' and m on the line AB; the direction of the viewer 
sight is indicated with an arrow below.

The projections of “hidden” points are designated by the corresponding 
letters in parentheses.

The points belonging to skew lines and situated on a single projecting 
line are sometimes called “competing”.
4-23012
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Sec. 15. The Projections of Plane Angles

1. I f  a plane containing an angle is perpendicular to a projection plane„ 
then the angle is projected on this plane in the form of a straight line.

2. I f  a plane containing a right angle is not perpendicular to a projection 
plane and at least one o f its sides is parallel to this plane, then the right angle 
is projected on it in the form of a right angle.

Suppose the side CB of the right angle ACB is parallel to a projection 
plane (Fig. 89). In this event the line CB is parallel to cpbp. Let the second 
side (AC) of the right angle intersect its projection apcp at point K. We draw 
in the projection plane through the point K  a straight line parallel to cjbp. 
The line KL is also parallel to CB, and the angle CKL turns out to be a right 
one. According to the theorem on three perpendiculars, the angle cpKL is 
also a right one*. Consequently, apcpbp is also a right angle.

Two converses correspond to this theorem on projecting a right angle 
(items 3 and 4).

3. I f  the projection of a plane angle represents a right angle, then the 
projected angle will be a right one, provided at least one side of this angle is 
parallel to a projection plane.

4. I f  the projection o f an angle one of whose sides is parallel to a projection 
plane represents a right angle, then the projected angle is also a right one.

With the above-stated theorems in mind, we can determine that the angles 
represented in Fig. 90 are right angles in space.

In what case do the projections of a right angle on two projection planes 
represent right angles ? It happens when one side of the right angle is perpen
dicular to the third plane of projection (then its other side is parallel to this 
plane). An example is given in Fig. 91: the side AC is perpendicular to Wy 
the side BC being parallel to W.

Using the knowledge of projecting a right angle, of supplementing the 
system V, H  with a system S , H  (Sec. 8), and of the positions of the projec
tions of a line parallel to one of the projection planes (Sec. 11), we can 
accomplish the following construction: through a point A draw a straight 
line so that it intersects the given line at right angles. The solution is shown 
in Fig. 92: the initial position (left), forming one more system (,S, H) in 
addition to F, H , the plane S  being parallel to BC (middle), the construction 
of the line AK perpendicular to BC (right).

Since the plane S  is parallel to BC which is provided by drawing the axis 
S/H  parallel to be, the right angle AKB (or AKC) is projected on the plane S  
true shape, i.e. in the form of the right angle asksbs. On constructing the 
projections of the point A and the line BC on the plane S, we draw asks 
perpendicular to bscs, and then obtain the projections k  and k \  and the 
projections ak and a'k' (the course of construction is indicated by arrows).

* According to the three perpendiculars theorem: if KL±CpK, then K L ± C K ;  accord
ing to the converse: if KLA.CK, then K L ± cpK.
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Fig. 89

Fig. 92
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May we consider that by having constructed the perpendicular AK to 
the line BC, the distance from A to BC is determined? No, we have only 
constructed the projections of the line segment AK neither of which deter
mines the true length of the distance. If we have to determine the length of 
the segment AK, i.e. the distance from A to BC, the construction should be 
continued, say, by the method considered in Sec. 13.

5. I f  a plane containing an obtuse or an acute angle is not perpendicular 
to a plane of projection and at least one of its sides is parallel to the projection 
plane, then the projection of the obtuse angle on this plane represents an obtuse 
angle, and the projection of the acute angle an acute angle.

Suppose the line CB (Fig. 93) is parallel to the projection plane. Let us 
consider the obtuse angle KCB or the acute angle MCB, and draw in the 
plane of this angle a line CL perpendicular to CB. Since the angle LCB is a 
right one, its projection (the angle Lcpbp) represents also a right angle. 
This angle is enclosed inside the angle Kcpbp and contains the angle Mcpbp, 
consequently, the angle Kcpbp is obtuse, and Mcpbp is acute.

Thus, the projection of an angle represents an angle named as the pro
jected angle itself (right, obtuse, or acute) if at least one side of the angle is 
parallel to the plane of projection.

In general, the projection of any angle may represent an acute, or a right, 
or an obtuse angle depending on the position of the angle relative to the 
projection plane.

6. I f  both sides of any angle are parallel to the plane of projection, then its 
projection is equal by magnitude to the angle projected.

This follows from the equality of angles with parallel and equally directed 
sides.

That is why it is easy to determine, for instance, the angle between the 
line AB (see Fig. 50) and the plane K, since this is the angle between the 
projection ab and the x-axis; analogously, the angle between CD and the 
plane H  (Fig. 51) is determined as the angle between c'd' and the x-axis, 
and the angle between EF (Fig. 52) and the plane V as the angle between 
e" f"  and the z-axis.



CH. 2. POINT AND STRAIGHT LINE 53

For a right angle the equality of its projection to the angle itself is preserved 
also when only one side o f the right angle is parallel to the projection 
plane.

But for an acute or for an obtuse angle one of whose sides is parallel to the 
projection plane the projection of the angle cannot be equal to the projected 
angle.

Moreover, the projection of an acute angle is less than the angle projected, 
and the projection of an obtuse angle is greater (by its magnitude) than the 
angle itself.

Let (Fig. 94) AiBC be an acute angle and its side CB be parallel to the 
plane P; cpbp is parallel to CB. The plane S  drawn through the point C 
perpendicular to CB is perpendicular to the plane P and intersects the latter 
along the line Sp passing through cp perpendicular to cpbp. If we draw 
through the point B different straight lines at the same acute angle to CB, 
then all these lines will intersect the plane S  at points whose projections will 
be located on the line Sp. Let us assume that the lines AB and AiB form 
with the line CB equal angles: ^  ABC = AiBC. And if AB is parallel to 
the plane P, then ^  apbpcp = ABC. If the side AiB is not parallel to P, 
then the projection of the point A\ is obtained on the line Sp nearer to cp 
than the projection of the point A. Consequently, the projection of the angle 
AiBC represents an angle smaller than the angle apbpcp, i.e. aipbpcp <  ^  
^  AiBC.

7. I f  the sides o f an angle are parallel to the projection plane or inclined 
to it at equal angles, then the bisection o f the projection of the angle on this 
plane of projection corresponds to the bisection of the angle itself in space.

8. The bisection of an angle in space corresponds to the bisection of its 
projection only provided the sides of the angle form equal angles with the pro
jection plane.

9. I f  the sides o f an angle are inclined to the projection plane at equal 
angles, then its projection cannot be equal to the angle itself.

This can be proved by bringing the angle MKN into coincidence with the 
plane P when rotating it about the line MN  (Fig. 95). As is obvious from the
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drawing, the angle MkpN  will turn out to be inside the angle MK\N , and the 
vertices K\ and kp on a common perpendicular to MAT.

10. The projections o f an acute and an obtuse angles may be equal to the 
angle projected not only under the condition of parallelism o f the sides o f the 
angle to the projection plane.

It is seen from Fig. 96 that all the angles, for instance, the acute angle 
MKN and the obtuse angle MKNi whose sides are respectively contained in 
the projecting planes P and Q are projected into an angle equal to the angle 
MLN, these angles approaching 0° and 180°, respectively. Obviously, among 
these angles one may appear to be equal to its projection.

An example of constructing such an angle is given in Sec. 38.

QUESTIONS TO SECS. 13-15

1. How are right triangles constructed on the drawing for determining 
the length of a segment of an oblique line and its angles with the projection 
planes V and H I

2. What conditions must be satisfied by the angles between an oblique 
line and the projection planes V and //?

3. What property of parallel projecting refers to parallel lines?
4. Is it possible to find out whether two profile lines are parallel to each 

other given the drawing of these lines in the system V, H I
5. How are two intersecting lines represented in the system F, H ?
6. How should the point of intersection of the projections of two skew 

lines be interpreted?
7. In what case is a right angle projected in the form of a right angle?
8. In what case is the projection of an obtuse or an acute angle is neces

sarily an angle named accordingly (obtuse or acute)?
9. Is it possible for the projection of an acute or of an obtuse angle one 

of whose sides is parallel to the projection plane to be equal to this angle in 
space?

10. In what case does the bisection of the angle obtained in projection 
correspond to such bisection of the angle in space?

11. Is it possible for an angle obtained as the projection of an angle in 
space to be equal to this angle if the sides of the latter form equal angles 
with the projection plane?

12. Is it possible for an acute or for an obtuse angle whose sides are not 
parallel to the projection plane to be equal to its projection on this plane?



CHAPTER 3

THE PLANE #

Sec. 16. Ways of Specifying a Plane 
in the Drawing

The position of a plane in space may be determined by:
(1) three points not lying on one line; (2) a line and a point not lying on 

the line; (3) two intersecting lines; (4) two parallel lines.
Accordingly, a plane in the drawing may be specified by: (1) the projec

tions of three points not lying on one line (Fig. 97); (2) the projections of a 
line and a point not lying on the line (Fig. 98); (3) the projections of two 
intersecting lines (Fig. 99); (4) the projections of two parallel lines (Fig. 100).

The specifications of a plane represented in Figs. 97-100 can be transform
ed into one another. For instance, drawing a line through the points A and 
B (Fig. 97), we obtain the specification of a plane represented in Fig. 98, 
wherefrom we can pass over to Fig. 100 by drawing through the point C a 
line parallel to the line AB. A plane may be specified on the drawing by the 
projections of any plane figure (a triangle, square, circle, etc.). Let a plane 
P be defined by the points A , B, and C (Fig. 101). Drawing straight lines 
through the like projections of these points, we get the projections of the 
triangle ABC. The point D taken pn the line AB thus belongs to the plane P ; 
drawing a line through the point D and another point a fortiori belonging 
to the plane P (for instance, through the point C), we get another line in the 
plane P.

Analogously, we may construct straight lines and, consequently, points 
belonging to a plane specified by any of the above-listed methods.

We shall see below that a plane perpendicular to the projection plane may 
be specified by the straight line along which these planes intersect.
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Sec. 17. Constructing Traces of a Plane

A more obvious representation of a plane can be obtained by means of 
straight lines along which it intersects the projection planes. Fig. 102 gives 
an example of constructing such lines when a plane Q is specified by two 
intersecting lines AB and CB.

To construct the straight line along which the plane Q intersects the plane 
H  it is sufficient to construct two points belonging both to the plane Q and 
to the plane H. Such points are the traces of the lines AB and CB on the 
plane H, i.e. the points of intersection of these lines with the plane H. We 
thus construct the projections of these traces and draw a line through the 
points mi and m2 to obtain the horizontal projection of the line of inter
section of the planes Q and H.

The line of intersection of the planes Q and V is defined by the vertical 
traces of the lines AB and CB.

Straight lines along which a plane intersects the projection planes are called 
the traces of this plane on the projection planes, or simply the traces o f the 
plane.

Figure 103 represents a plane P which intersects the horizontal plane of 
projection along a straight line designated P/, and the vertical plane along a
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straight line Pv. The line Ph is called the horizontal trace of the plane, and 
the line Pv its vertical trace.

If a plane intersects the projection axis, then a point of intersection of the 
traces of the plane is obtained on this axis. In Figure 103 the traces Pv and 
Ph intersect on the *-axis at a point designated Px.

The trace of a plane on the projection plane merges with its projection 
on this plane. The trace Ph (Fig. 103) merges with its horizontal projection; 
the vertical projection of this plane is located on the axis of projection. The 
trace Pv merges with its vertical projection; the horizontal projection of this 
trace is situated on the axis of projection.

In the drawing a plane may be specified by the projections of its traces* 
We may confine ourselves to designating only the traces themselves (Fig* 
104). Such a drawing is descriptive and is convenient in carrying out some 
constructions.

When constructing the traces of a plane the point of their intersection 
may be used for checking the accuracy of the construction: the traces must 
intersect at a point on the projection axis (see Fig. 102).

The angle between the traces in the drawing is not equal to the angle 
formed by the traces of a plane in space. Indeed, found at the intersection of 
the traces is the vertex of a trihedral angle two of whose faces coincide with 
the planes of projection (Fig. 103). But the sum of two plane angles of a 
trihedral angle exceeds the third plane angle. That is why the angle formed 
by the traces Pv and Ph in the drawing (Fig. 104) is always greater than the 
angle between these traces in space.

Considering a plane in the system K, //, W, we come to a conclusion that 
in the general case a plane intersects each of the axes of projection (in Fig. 
105 the plane P intersects the x>, y-, and z-axes). Such plane is called an 
oblique plane. The trace Pw is termed the profile trace of the plane.
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Since the points EX9 Fy9 and Pz lie on the x-, y-9 and z-axes, respectively, 
then to construct the drawing of a plane in the system V9 H9 W it is sufficient 
to have the line segments OPX9 OPy9 and OPz specified, i.e. to know the co
ordinates of the points PX9 Py9 and Pz in the system of *-, y-9 and z-axes. 
In other words, it is sufficient to know only one coordinate for each of the 
points, since two other coordinates are equal to zero. For instance, to con
struct the point Pz we have to know only its z-coordinate, since the abscissa 
and ordinate of this point are zero.

Sec. 18. A Straight Line and a Point in the Plane.
Principal Lines of a Plane

How do we construct in the drawing a straight line contained in a given 
plane? This construction is based on two statements known from geo
metry.

(1) A straight line belongs to a plane if  it passes through two points belong
ing to this plane.

(2) A straight line belongs to a plane if  it passes through a point belonging 
to this plane and is parallel to a line contained in this plane or in a plane 
parallel to the given one.

Suppose that the plane Qi (Fig. 106) is defined by two intersecting lines 
AB and CB9 and the plane Q2 by two parallel lines DE and FG. According 
to the first statement, a line intersecting the lines defining the plane is con
tained in this plane.

Whence it follows that if a plane is specified by its traces, then a line 
belongs to the plane i f  its traces lie on like traces o f the plane (Fig. 107).

Suppose the plane P (Fig. 106) is defined by a point A and a line BC. 
According to the second statement, a line drawn through the point A and 
parallel to the line BC belongs to the plane P. Hence, a line belongs to a 
plane i f  it is parallel to one of the traces of this plane and has a common point 
with the other trace (Fig. 108).



CH. 3. PLANE 59

Fig. 106

The examples of constructions given in Figs. 107 and 108 should not be 
understood so that prior to constructing a line in a given plane we have 
necessarily to construct the traces of this plane. Of course, it is not required 
to.

For instance, in Fig. 109 a line AM  is constructed in a plane specified by a 
point A and a line passing through the point L. Let us assume that the line 
AM  must be parallel to the plane H. We begin with drawing the projection 
<a'm' perpendicular to the line of recall a'a. Using the point m \ we find the
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point m and then draw the projection am. The line AM  satisfies the initial 
condition: it is parallel to the plane H  and lies in the given plane, since it 
passes through two points (A and M) a fortiori belonging to this plane.

How to construct in the drawing a point contained in a given plane? Prior to 
doing this, we construct a line lying in the given plane and take a point on this 
line.

For example, it is required to find the vertical projection of the point D if 
its horizontal projection d is given, and it is known that the point D must 
lie in the plane defined by the triangle ABC (Fig. 110).

First of all we construct the horizontal projection of a straight line so 
that the point D might appear on this line, and the latter would be contained 
in the given plane. To this end we draw a line through the points a and d 
and mark the point m at which the line ad intersects the line segment be. By 
constructing the vertical projection m' on b'c\ we get the line AM  situated 
in the given plane: this line passes through the points A and M  of which 
the first one a fortiori belongs to the given plane, the second being construct
ed in it.

The required vertical projection d' of the point D must lie on the vertical 
projection of the line AM.

Another example is given in Fig. 111. In the plane Q specified by parallel 
lines AB and CD there must be a point K  for which only the horizontal 
projection (point k) is given. Through the point k there drawn a line taken 
as the horizontal projection of the line in a given plane. Using the points e 
and f  we construct e' on a'b' and f '  on c'd'. The line EF thus', constructed 
belongs to the plane Q, since it passes through the points E  and F a fortiori 
belonging to the plane. If a point k' is taken on e f \  then the point K will 
turn out to be contained in the plane Q.
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Of the straight lines that may be situated in a given plane, of special 
importance are the following lines: H principal lines (also called H parallels or 
horizontal lines), V principal lines (also called V parallels or vertical lines)*, 
and the steepest lines, i.e. the lines of maximum inclination to the projection 
planes. The line of maximum inclination to the plane H will be called the 
slope line of a plane**.

Horizontal lines are lines lying in a given plane and parallel to the horizontal 
plane of projection.

Let us construct a horizontal line of the plane specified by the triangle 
ABC. It is required to draw the horizontal line through the vertex A (Fig. 
112).

Since the horizontal line of a plane is a straight line parallel to the plane 
H , we obtain its vertical projection by drawing a'k' perpendicular to a'a. To 
get the horizontal projection of this horizontal line we construct the point k 
and draw a straight line through the points a and k.

The line AK thus constructed is really the horizontal line of the given 
plane: it lies in the plane, since it passes through two points which a fortiori 
belong to this plane, and is parallel to the H plane of projection.

* Along with horizontal and vertical lines of a plane, we may also consider its profile 
lines, i.e. lines lying in a given plane and parallel to the W plane.

**The slope line o f a plane is often called “the line of the greatest slope”, but the 
notion ‘slope’ with respect to a plane does not require the attribute ‘greatest’.



62 DESCRIPTIVE GEOMETRY

Let us now consider the construction of a horizontal line of a plane speci
fied by its traces.

The horizontal trace of a plane is one of its H  parallels (a “zero ” parallel). 
Therefore the construction of an H  parallel of a plane is reduced to drawing 
in this plane a line parallel to the horizontal trace of the plane (Fig. 108> 
left). The horizontal projection of a horizontal line is parallel to the horizon
tal trace of a plane; the vertical projection of a horizontal line is parallel to 
the axis of projection.

Vertical lines are lines lying in a given plane and parallel to the vertical 
plane of projection.

An example of constructing a vertical line in a plane is given in Fig. 113. 
The construction is carried out analogously to that of a horizontal line (see 
Fig. 112).

Let a vertical line pass through the point A (Fig. 113). We begin the con
struction with drawing the horizontal projection of the vertical line, i.e. the 
line ak, since the direction of this projection is known: ak is perpendicular 
to a!a. We then construct the vertical projection of the vertical line, that is 
the line a'k'.

The straight line thus constructed is really a vertical line of the given 
plane: this line is contained in the plane, since it passes through two points 
belonging to this plane, and is parallel to the V plane.

Let us now construct a vertical line in a plane specified by its traces. 
Examining Fig. 108 (right) in which a plane Q and a straight line MB are 
represented, we find out that this line is a vertical line of the given plane. 
Indeed, it is parallel to the vertical trace of the plane (i.e. to its “zero”* 
vertical line). The horizontal projection of the vertical line is parallel to the 
x-axis, its vertical projection being parallel to the vertical trace of the 
plane.

The steepest lines of a plane with respect to the planes H, V, and W are 
lines lying in this plane and perpendicular to its horizontal lines, or to its 
vertical lines, or to its profile lines. In the first case the inclination to the H 
plane is determined, in the second case to the V plane, and in the third to 
the W plane. To construct the steepest lines of the plane we may use, o f 
course, its traces.

As it was said above, the steepest line with respect to the H  plane is called 
the slope line of a plane.

According to the rules for projecting a right angle (see Sec. 15), the 
horizontal projection of the slope line of a plane is perpendicular to the 
horizontal projection of a horizontal line of this plane or to its horizontal 
trace. The vertical projection of the slope line is constructed after its horizon
tal projection and may occupy various positions depending on how the 
plane is specified. Fig. 114 illustrates the slope line of the plane Q: BK is 
perpendicular to Qh. Since bK is also perpendicular to Qh, the angle BKb is a 
plane angle of the dihedral angle formed by the planes Q and H. Con
sequently, the slope line o f a plane may serve for determining the angle o f  
inclination o f this plane to the H  plane o f projection.
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Fig. 114 Fig. 115

Analogously, the steepest line of a plane with respect to the V plane serves 
for determining the angle between this plane and the V plane of projection* 
and the steepest line with respect to the W plane for determining the angle 
with the W plane.

Figure 115 shows the slope lines constructed in given planes. The angle 
between the planes P and H  is represented by the projections of the line 
segment BK. The magnitude of this angle can be determined by constructing 
a right triangle using the projections b'k' and bk.

Obviously, the steepest line of a plane determines the position of this 
plane. For instance, if the slope line KB is specified (Fig. 115), then, drawing 
a horizontal line AN  perpendicular to it, or given the x-axis of projection 
and drawing Ph perpendicular to kb, we completely determine the plane 
for which KB is the slope line.

The above considered principal lines of a plane, mainly horizontal and 
vertical lines, are often used in various constructions and when solving prob
lems. This is because these lines are easily constructed and therefore they 
are convenient to be used as auxiliary lines.

In Figure 116 we are given the horizontal projection k of the point K. It is 
required to find the vertical projection k ' of the point K  which must be in 
the plane specified by two parallel lines drawn from the points A and B.

First we have to draw a straight line passing through the point K  and 
lying in the given plane. Here it is convenient to choose a vertical line M N: 
its horizontal projection is drawn through the given projection k . Then we 
construct points rri and ri determining the vertical projection of the vertical 
line.

The required projection k' must be situated on the line m'n'.
In Figure 117 (left) given the vertical projection a' of point A belonging 

to the plane P9 its horizontal projection a is found. The appropriate con
struction is accomplished with the aid of a horizontal line EK.

In Figure 117 (right) an analogous problem is solved with the aid of a  
vertical line MN.
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One more example of constructing the missing projection of a point be
longing to some plane is given in Fig. 118. Given: the slope line (AB) of a 
plane and the horizontal projection (A:) of a point (left); required: to construct 
the vertical projection of the point. Figure 118 (right) shows the construc
tion : through the point k we draw (perpendicular to ab) the horizontal pro
jection of the horizontal line on which the point K  must lie. Using the point 
V we find the vertical projection of this horizontal line and on it the required 
projection k'.

Figure 119 gives an example of constructing a second projection of a 
plane curve, using the known horizontal projection of this curve and a 
plane P in which this curve is contained. Taking a number of points on the 
horizontal projection of the curve and using horizontal lines, we find the 
points required for constructing the vertical projection of the curve.

As usual, arrows indicate the successive steps in finding the vertical pro
jection a! with the horizontal projection a known.
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QUESTIONS TO SECS. 16-18

1. How is a plane specified in the drawing >
2. What is the trace of a plane on the plane of projection?
3. What is the location of the vertical projection of the horizontal trace 

and the horizontal projection of the vertical trace of a plane?
4. How is it determined from the drawing whether a straight line belongs 

to a given plane?
5. How is a point belonging to a given plane constructed in the drawing?
6. What is a vertical line, a horizontal line, and the steepest line of a 

plane?
7. Can the slope line of a plane serve for determining the angle of inclin

ation of this plane to the H  plane of projection?
8. Does a straight line define a plane for which this line is the slope line?

Sec. 19. Various Positions of a Plane Relative to 
the Projection Planes

The following positions o f a plane relative to the projection planes V, H, 
W are possible: (1) a plane is perpendicular to none of the projection planes, 
(2) a plane is perpendicular to one o f them, (3) a plane is perpendicular to two 
planes o f projection.

Planes grouped under (2) and (3) are termed ‘projecting planes’.
1. A plane perpendicular to none of the projection planes is an oblique 

plane (see Fig. 105).
Let us, for instance, consider the plane represented in Fig. 112.
This plane is perpendicular to none of the projection planes. That it is 

perpendicular neither to V, nor to H  is confirmed by the form of the projec
tions a'b'c' and abc: if the plane defined by the triangle ABC were perpen
dicular at least to H, then the projection abc would be a segment of a 
straight line (Fig. 120).

Thus, the plane under consideration is perpendicular neither to V, nor 
to H. Then, maybe it is perpendicular to W1 No, the horizontal line AK 
of this plane is not perpendicular to W (cf. Fig. 54 showing a straight line 
perpendicular to W), and, consequently, the plane ABC is not perpendicular 
to W.

Hence, Fig. 112 gives an example of specifying an oblique plane in the 
system V, H.

More examples of specifying an oblique plane are given in Figs. 109, 110, 
111, 113, 116, as also in Figs. 102, 104, 107 (left), 108, 115 (right), 117, and 
119 in which planes are represented by their traces. An oblique plane (see 
Fig. 105) intersects each of the axes x , y, z. The traces o f an oblique plane are 
never perpendicular to these axes of projection.

If the traces Ph and Pv of an oblique plane form equal angles with the 
.Y-axis, then it means that the angles between the plane P and the planes H
5-23012
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and V are equal to each other. Indeed, if the plane angles of a trihedral angle 
are equal to each other, then the dihedral angles opposite them are also 
equal. The angles formed by the traces Ph and Pv with the x-axis (see Fig. 
105) represent the plane angles opposite which there respectively situated 
the dihedral angles formed by the plane P with the planes V and H.

For an oblique plane to be inclined to the planes H , F, and W  at equal 
angles, it is necessary that OPx = OPy = OPz (Fig. 105), i.e. the traces must 
form with the projection axes angles equal to 45°.

Considering an oblique plane in space within the limits of the first quad
rant or the first octant, we note that the angle between the horizontal and 
vertical traces may be acute (as in Fig. 105) or obtuse (as in Fig. 121),

The plane Q depicted in Fig. 121 passes through all the octants except 
for the sixth.

If the drawing of an oblique plane is to be constructed with the aid of 
the coordinates of the points of intersection of its traces, then, obviously, 
the following must be given: the positive abscissas and ordinates of the 
points Qx and Qy9 and negative z-coordinate of the point Qz.

Figure 122 illustrates a particular case of an oblique plane: its traces 
Ph and Pv lie on one line in the drawing. With Fig. 15 in mind, we note that 
the traces Ph and Pv form equal angles with the x-axis not only in the drawing, 
but in space as well. As is shown in Fig. 122 (right), from the congruence of 
the right triangles k0kPx and k'kPx it follows that the angle k0Pxk is equal 
to the angle kPxk \  i.e. the traces Pv and Ph form equal angles with the x- 
axis.

Hence, the plane P forms equal angles with the planes H and V. Its 
portion situated in the first quadrant contains the true size of the angle 
between Ph and Pv (in our example it is obtuse).
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Figure 122 shows also the construction of the third trace of a plane 
(Pw) using its two traces Ph and Pv. Since the traces Ph and Pv lie on one 
line, the point Pz merges with the point Py and, consequently, the point 
Pyi turns out to be equidistantwi th the point P2 from the point O. Therefore 
the trace Pw is inclined to the y-axis (and to the z-axis) at an angle of 45°. 
Such an inclination of the profile trace will occur in all cases of constructing 
a plane whose horizontal and vertical traces lie on one line intersecting the 
;t-axis at an acute angle.

This plane passes through a perpendicular to the x-axis which forms 
an angle of 45° with the V (or H) plane. And since this perpendicular is 
perpendicular to the bisector plane of the dihedral angles adjacent to the 
angle VH, the plane under consideration may be defined as a plane per
pendicular to the bisector plane of the second and fourth quadrants.

2. If a plane is perpendicular only to one projection plane, then three 
particular cases are possible.

(a) A plane is perpendicular to the horizontal plane of projection. These 
are called horizontal projecting planes.

An example is given in Fig. 123: a plane is specified by the projections 
of a triangle ABC. Its horizontal projection represents a segment of a straight 
line. The angle /? is equal to the angle between the given and the V plane.

Figure 124 illustrates an example of representation of a horizontal 
projecting plane by its traces: along with the pictorial representation (left), 
we are given (in the middle) a drawing in the system F, H  with the x-axis 
and traces Sv and Sh indicated, and (right) a drawing without indicating the 
x-axis and, hence, the Sv trace.

The vertical trace is perpendicular to the H plane and to the x-axis of 
projection, the horizontal trace forming any angle with the projection axis. 
This angle serves as a plane angle of the dihedral angle between the horizontal 
projecting plane and the F plane.

The angle between Sh and SV9 as also between Sh and Sw in space is equal 
to 90°.
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Fig. 125 Fig. 126
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If a horizontal projecting plane contains a «point, then the horizontal 
projection of this point must lie on the horizontal projection of the plane. 
It refers also to any system of points contained in a horizontal projecting 
plane irrespective of whether it is a straight line, a plane curve, or a figure.

The trace Sh may be considered as the horizontal projection of the 
plane.

(b) A plane is perpendicular to the vertical plane of projection. These are 
called vertical projecting planes. An example is given in Fig. 125: a plane is 
specified by the projections of a triangle DEF. The vertical projection re
presents a segment of a straight line. The angle a is equal to the angle be
tween DEF and the H  plane.

Figure 126 gives a pictorial representation (left), a drawing in the system 
V9 H with the projection axis shown (middle), and a drawing without show
ing the axis of projection (right). The horizontal trace is perpendicular both 
to the V plane and to the projection axis, the vertical trace forming any 
angle with the projection axis. This angle serves as a plane angle of the 
dihedral angle between the vertical projecting plane and the H plane.

The angle between Tv and Th in space is equal to 90°.
If a vertical projecting plane contains a point, then the vertical projection 

of this point must lie on the vertical trace of the plane. It is true for any 
system of points. The trace Tv (Fig. 126) may be considered as the vertical 
projection of the plane T.

(c) A plane is perpendicular to the profile plane of projection. Such planes 
are called profile projecting planes.

Figure 127 offers an example of a profile projecting plane which is 
specified by the projections of a triangle ABC. The horizontal of this plane 
is perpendicular to the W plane: the projections a'd' and ad are parallel to 
each other. This testifies to the fact that we deal with a profile projecting 
plane but not with an oblique plane (cf. Fig. 112).

The profile projection of the triangle ABC represents a segment of a 
straight line. The angle a between this segment and the line of recall c'c" 
is equal to the angle of inclination of the triangle to the H  plane, and the 
angle of inclination of the plane containing the triangle to the V plane is 
equal to 90°—a.

Figure 128 illustrates an example of representing a profile projecting 
plane by its traces.

The horizontal and vertical traces of this plane are parallel to the x-axis 
and, consequently, are parallel to each other.

The plane represented in Fig. 107 (right) is also a profile projecting plane.
A plane perpendicular to one of the projection planes (i.e. a horizontal-, 

vertical-, or profile-projecting plane) may, in particular, pass through the 
axis of projection. Such plane is called an axial plane.

Let us, for instance, consider the axial profile projecting plane repre
sented in Fig. 129. Its traces Rv and /fo merge with the x-axis; in this case 
it is necessary to have its third trace Rw or at least the position of a point 
belonging to this plane and not lying on the x-axis.
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Fig. 132
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An axial plane may be a bisector one. This means that an axial plane 
bisects the dihedral angle formed by the projection planes.

How can we represent a profile projecting plane in the drawing without 
the projection axes? In the way shown in Fig. 127. Another example is given 
in Fig. 130: the plane is specified by two intersecting lines one of which 
(AB) is perpendicular to the W plane, the other occupying an arbitrary 
position.

3. If a plane is perpendicular to two planes of projection, then also three 
cases of particular positions are possible:

(a) A plane is perpendicular to the planes V and W, i.e. parallel to the 
H plane. These are called horizontal planes.

Figure 131 illustrates an example of a horizontal plane specified by the 
projections of a triangle ABC. In Figure 132 (right) a horizontal plane in 
the system F, H is represented by its vertical trace. This trace (7̂ ,) may be 
considered as the vertical projection of the plane.

(b) A plane is perpendicular to the planes H and W, i.e. parallel to the V 
plane. Such planes are called vertical planes.

Figure 133 is an example of a vertical plane specified by the projections 
of a triangle CDE.

Figure 134 (right) gives an example of representing a vertical plane in 
the system F, H  by its trace Sh which may be considered as the projection 
of this plane on the H  plane.

(c) A plane is perpendicular to the planes H and F, i.e. parallel to the 
plane W. These are profile planes.

An example of representation of such a plane in the system F, W is given 
in Fig. 135: the plane is specified by the projections of a triangle EFG.

Another example is given in Fig. 136. Here the plane is represented in 
the system F, H  by its traces. Either of them may be considered as the 
projection of the plane P on the corresponding plane of projection. A profile 
plane combines in itself the properties of both a vertical- and a horizontal- 
projecting planes.
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Z

Fig. 136

QUESTIONS TO SEC. 19

1. How is an oblique plane arranged in the system K, //, IV1 The same 
question about planes called projecting.

2. What is a vertical projecting plane, a horizontal projecting plane, a 
profile projecting plane?

3. How is it possible to find out whether a plane specified in the system 
V, H  by intersecting or parallel lines is an oblique plane or a profile project
ing plane?

4. What do the horizontal projections of a horizontal projecting plane 
and a vertical plane represent?

5. The same question with reference to the vertical projections of a 
vertical projecting plane and a horizontal plane.

6. Where is the horizontal projection of any system of points contained 
in a horizontal projecting plane or a vertical plane situated?

7. Where is the vertical projection of any system of points contained 
in a horizontal plane or a vertical projecting plane situated?

8. What is the value of the angle in space between the vertical and hori
zontal traces of a horizontal- and a vertical-projecting planes?

Sec. 20. Drawing a Projecting Plane Through 
a Straight Line

Below we shall come across a necessity to draw a projecting plane through 
a straight line according to some condition. Any of such planes can be 
drawn through an oblique line. Examples are given in Fig. 137. Through a 
straight line specified in the system V, H  and passing through the point K  
there drawn the following planes: a vertical projecting plane represented 
by its vertical trace Tv; a horizontal projecting plane represented by its 
horizontal trace S*; and a profile projecting plane defined, besides the given 
line AK, also by a straight line AB perpendicular to the W plane.

In Figure 138 the planes drawn through a given straight line are represent
ed by traces. The position of the x-axis is either specified, or may be chosen.
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Fig. 137

But no vertical, horizontal, or profile planes can be drawn through art 
oblique line. Such planes can be drawn through lines situated correspond
ingly: a horizontal plane through a horizontal line, a vertical plane through 
a vertical line, a profile plane through a profile line. A horizontal plane T  
passing through a horizontal line AB, and a vertical plane S  passing through 
a vertical line CD are shown in Fig. 139.

Sec. 21. Constructing the Projections 
of Plane Figures

The construction of projections of plane figures (i.e. of figures lying 
entirely in one plane—such as, a square, a circle, an ellipse, etc.) is reduced 
to constructing the projections of a number of points, segments of straight 
lines and curves which form the contours of projections of figures. Knowing 
the coordinates of the vertices of a triangle, we can construct the projections 
of these points, then the projections of the sides, and thus the projections o f 
a figure.
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We have already come across the drawings containing the projections 
•of a triangle (for instance, Figs. 110, 112, and others). Comparing Figs. 110 
and 112, we notice that in Fig. 110 one of the projections, say the vertical, 
represents the “front” side of the triangle, and the horizontal projection its 
“rear” side; whereas in Fig. 112 either of the projections represents the 
triangle from one and the same side. The order in which the vertices are 
traversed may serve as a test here: in Fig. 110 they are traversed clockwise 
(moving from a' to c') for the vertical projection, and anticlockwise for 
the horizontal projection; in Fig. 112 the vertices are traversed in one and 
the same direction (clockwise) in both projections.

In the general case the projections of a polygon in the system V, H , W 
represent also polygons with the same number of sides, the plane containing 
this polygon being an oblique plane. But if in the system V, H  either of the 
projections of, say, a triangle represents a triangle, then its plane may turn 
out to be an oblique plane or a profile projecting plane: Fig. 112 illustrates 
an oblique plane, while Fig. 127 a profile projecting plane. As it was said 
in the explanation to Fig. 127, a horizontal (or vertical) line determines the 
situation in this case: if its projections on V and H  are parallel to each other, 
then the plane is profile projecting (Fig. 127), but if they are not parallel, 
then we have an oblique plane (for example. Figs. 112 and 115, left).

If the projection of a polygon on V or on H represents a segment of a 
straight line, then the plane containing this polygon is perpendicular to V 
or to H , respectively. For instance, in Fig. 123 the triangle is contained in 
a horizontal projecting plane, and in Fig. 125 in a vertical projecting plane.

A figure placed parallel to a projection plane is projected on it without 
distortion (i.e. true size). For instance, all elements of the triangle CDE 
represented in Fig. 133 are projected on the V plane without distortion; 
the circle shown in Fig. 140 is projected on the H plane also without dis
tortion.
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But if the plane containing a figure is not parallel to a projection plane, 
then to determine the true shape of this figure we apply the methods discussed 
below (in Chapter 5). Of course, we could now, without knowing these 
methods yet, construct, for instance, the true size of the triangle represented 
in Fig. 112 by determining the true length of each of its sides as the length 
of a line segment (see Sec. 13), and constructing then a triangle from the 
line segments thus found. At the same time we would determine the angles 
of the given triangle. They usually proceed so, for instance, when construct
ing the development of the lateral surface of a pyramid, prism, etc. (see 
Sec. 44 below). If a polygon is contained in a projecting plane, we can obtain 
its true size proceeding as in Fig. 141.

Suppose it is required to determine the true shape of the quadrilateral 
KPNM contained in a vertical projecting plane Q. Then, as is shown in 
Fig. 141 (right), we may take two axes of rectangular coordinates in the 
plane of the figure with the origin, say, at K : the axis of abscissas (k 'x\ kx) 
parallel to the V plane, the axis of ordinates perpendicular to the V plane 
(the projections of this axis are k'y' and ky)\ draw a straight line KL (pa
rallel, say, to k ’x% and lay off on it: K1 = kfp \ K2 = k'm \ K3 = k'ri. 
We complete the construction by laying off the line segments PI = /?4, 
M2 = m5, and N3 = n6 on the perpendiculars to the line KL at points 
7, 2, and 3. The quadrilateral KMNP thus constructed represents the true 
form of the given one.

When solving many problems determination of the position occupied by 
a plane figure relative to the projection planes is of essential importance. 
As an example, let us consider the problem of constructing the four remark
able points of the triangle.

Since to the bisection of a line segment in space there corresponds a 
similar bisection of the projections of this segment (see Sec. 12), the point of 
intersection of the medians* can be directly constructed in the drawing in 
all cases. It is sufficient (Fig. 142) to draw the medians on either of the pro
jections of the triangle and the median point will be determined. In doing 
so we may confine ourselves to constructing both projections only of one 
of the medians (for instance, ad and a'd') and one projection of a second 
median (for instance, b'e'); the intersection of a'd' and b'e' yields m '. Using 
this point we find the point m on ad.

We could make use of another method: to construct only one of the 
medians, and to find the point M  on it taking advantage of the property of 
this point known from geometry: it divides each median in the ratio 2 :1 .

The construction of the point of intersection o f the three altitudes o f a 
triangle (i.e. the orthocentre of the triangle) and of the point of intersection 
of the perpendiculars to the sides o f a triangle drawn through their mid
points (called the circumcentre) is associated with drawing mutually perpen
dicular lines.

*The point o f intersection of the three medians is the centroid of the triangle.
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In Section 15 we mentioned the conditions under which mutually per
pendicular segments in space have also mutually perpendicular segments as 
their projections. If the plane of a triangle is parallel to a projection plane 
(for instance, the triangle CDE in Fig. 133), then dropping perpendiculars 
from the points c', d', and e' to the opposite sides, we obtain the projections 
of the altitudes of the triangle. But we cannot proceed in the same way with 
the triangle contained in an oblique plane.

In a particular case, when one of the sides of a triangle is parallel to the 
H  plane, and the other is parallel to the V plane (Fig. 143), drawing c 'f' 
perpendicular to a'b' and be perpendicular to ac we get in space CF perpen
dicular to AB and BE perpendicular to AC. The point of intersection of the 
altitudes is thus constructed without using any special methods.

But in the general case to draw perpendicular lines in the projection 
drawing we have to resort to special methods which will be discussed below.

The point of intersection of the bisectors (the incentre of the triangle) 
can also be constructed directly only in some particular cases. This is be
cause the bisection of the projection of an angle corresponds to its bisection 
in space only if the sides of the given angle are equally inclined to the pro
jection plane on which the projection of the angle is bisected (see Sec. 15)

When constructing the projections o f a polygon pay attention that the 
condition o f location of all points of a given figure in one plane is not vio
lated.

Given in Fig. 144 (left) are a complete horizontal projection of a penta
gon ABCDE and the vertical projections of only three of its vertices: a, b', 
and e'. The right-hand drawing shows how the vertical projections of the 
two missing vertices (<c' and d') are constructed. For the points C and D to lie 
in the plane defined by three points (A, B, and E) it is necessary that they are 
situated on straight lines contained in this plane. Such lines are the diagonals 
AC, AD, and-.BE whose horizontal projections can be constructed. On the 
vertical projection of the pentagon we can draw only b'e'. But in the plane
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of the pentagon there lie the points (K and M) of intersection of the diagonals 
whose horizontal projections (k and m) are available, and the vertical pro
jections are obtained at once, since they must lie on b'e'. The vertical pro
jections a'k' and a'm' of the two remaining diagonals are constructed by 
two points. The points c' and d' must lie on these diagonals, respectively. 
They are determined with the aid of their horizontal projections.

A circle whose plane is parallel to a projection plane is projected on this 
plane true size (see Fig. 140 in which a circle is taken in the horizontal plane). 
If the plane containing the circle is perpendicular to a plane of projection, 
then the circle is projected on this plane in the form of a line segment whose 
length is equal to the diameter of the circle.

But if  a circle is situated in a plane which forms an acute angle a with the 
plane of projection, then the circle is projected into a figure called the ellipse.

Ellipse is also the name for the curve which bounds the figure of ellipse. 
Thus, the figure of ellipse is the projection of a circle, whereas the ellipse as 
a curve is the projection of its circumference. Henceforth the term ‘ellipse’ 
will mean the projection of the circumference of a circle.

The ellipse belongs to the curves called second-order or quadric curves 
(or simply quadrics). The equations of such curves in Cartesian coordinates 
represent equations of the second degree. A quadric curve intersects a 
straight line at two points. Below we shall come across the parabola and 
hyperbola which are also quadric curves.

The ellipse may be considered as a “compressed” circle. This is illustrated 
in Fig. 145 (left). Suppose a line segment OBi whose length is b is laid off 
on the radius OB, and b <  a (i.e. b is less than the radius of the circle). 
If we now take a point K  on the circle and, drawing a perpendicular from 
K to A iA2, mark a point Ki on KM  so that M K \: MK = b : a, then the 
point Ki will belong to the ellipse. Proceeding in this way we can transform 
any point of the circle into a point of the ellipse preserving one and the same
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Fig. 145

ratio b : a. The circle thus becomes uniformly compressed; the line into which 
the circle is transformed is an ellipse. The ratio b : a is called the compression 
coefficient. As b approaches a, the ellipse keeps expanding until it becomes 
a circle (when b =  a).

When dealing with the ellipse the following should be remembered 
(from the high-school course of drawing):

(1) the line segment A iA2 =  2a is called the major axis of the ellijpse;
(2) the line segment B iB2 = 2b is called the minor axis of the ellipse;
(3) the major and minor axes are mutually perpendicular;
(4) the point of intersection of the axes is called the centre of the ellipse;
(5) a line segment joining two points of the ellipse and passing through 

the centre of the ellipse is termed the diameter of the ellipse;
(6) points Aiy A29 B i , and B2 are called the vertices of the ellipse;
(7) the ellipse is symmetric with respect to its axes and its centre;
(8) the ellipse is the locus of points the sum of whose distances from 

two given points Fi and F2 (Fig. 145, right) is constant and is equal to 2a 
(the length of the major axis).

From Figure 146 it follows that when the circle is turned about its 
diameter A\A2 through an angle a, this diameter, being parallel to the H  
plane, preserves its length in the horizontal projection and becomes the major 
axis of the ellipse (see Fig. 146, right). As to the diameter B\B29 it is obvious 
that, being turned inclined to the H  plane at an angle a, it is projected on this 
plane shortened: b\b2 = b'ib2 cos a. This corresponds to the ratio of the 
axes of the ellipse, i.e. to its compression coefficient.

If two mutually perpendicular diameters are drawn in a circle, then in 
its projection, which is an ellipse (Fig. 146, right), the projections of such 
diameters of a circle turn out to be conjugate diameters of an ellipse. If in 
a circle (Fig. 146, left) we draw, for instance, a chord mini parallel to the 
diameter e f  then the diameter cd will bisect this chord and all chords which 
are parallel to it. Obviously, in an ellipse this property is preserved (see 
Fig. 146, right): the diameter cd bisects the chord mini which is parallel to 
the diameter ef conjugate to cd. But just such two diameters o f an ellipse 
either of which bisects the chords which are parallel to the other diameter are 
conjugate diameters.
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Conjugate diameters of the ellipse are not perpendicular to each other* 
its axes, which are also a pair of conjugate diameters, being an exception.

How an ellipse is constructed by its axes is shown in Fig. 147 (left). 
As is obvious, two concentric circles are drawn, their radii being a (the 
length of the major axis) and b (the length of the minor axis). If we draw 
a radius Om\ and straight lines mim0 and em parallel to the minor and to the 
major axis, respectively, then the intersection of these lines will yield a point 
m which belongs to the ellipse. Indeed,

mm0 _  Oe _  b 
m^m o Oml a

Drawing a number of radii and repeating the above construction, we get 
a number of points belonging to the ellipse.

Each time a point is constructed, we may obtain three points more which 
are situated symmetrically to the constructed one about the axes of the 
ellipse or its centre.

Figure 147 illustrates the construction of the foci of an ellipse: striking 
from the point Bi an arc of radius equal to the length of the semimajor 
axis OAu we intersect the major axis at points Fi and F2 which are the foci 
of the ellipse. We then construct an angle FiKF2, where K  is any point on 
the ellipse, and draw the bisector in it. Now at point K  we draw a tangent 
line to the ellipse which is perpendicular to the bisector. The line KN per
pendicular to the tangent line is a normal to the ellipse at point K.

How are the axes of an ellipse constructed if its conjugate diameters are 
known?
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Suppose the conjugate semidiameters Ca and Cb are obtained (Fig. 148). 
Then the axes are constructed in the following succession:

(1) one of the conjugate semidiameters, say Cb, is rotated through an 
angle of 90° towards the other (until the position Cb2 is occupied);

(2) the line segment ab2 is drawn and bisected;
(3) a circle of radius kC is drawn from point k;
(4) the line defined by the segment ab2 is extended to intersect this circle 

at points D and E;
(5) a straight line DC is drawn to get the direction of the major axis;
(6) EC is drawn to indicate the direction of the minor axis;
(7) Cl =  aE is laid off to obtain the major axis;
(8) C3 = aD is laid off to get the minor axis;
(9) the following segments are laid off: C2 = Cl, C4 =  C3, C5 =  Ca, 

C6 = Cb.
The required ellipse can be drawn through the following eight points: 

1, a, 3, b, 2, 5, 4, and 6, or constructed with the aid of the major and minor 
axes as is shown in Fig. 147.

Thus, with the straight lines CD and CE drawn, we have the directions 
of both axes of the ellipse. The point a belonging to the ellipse divides the 
diameter ED into two segments one of which (aE) is equal to the semimajor 
axis of this ellipse, the other (aD) being equal to the semiminor axis. If 
(Fig. 149) the lines CD and CE are taken for the coordinate axes x  and y, 
respectively, and a perpendicular ad is drawn from the point a to the line CD, 
then the coordinates of the point a may be expressed in the following way

xa = aE cos a, ya = aD sin a.

Hence

+- =  cos2 a +  sin2 a =  1.i a E f  (aD)'

This is the equation of the required ellipse in which aE is the semimajor 
axis, and aD is the semiminor axis.

The construction of the horizontal projection of a circle contained in a 
vertical projecting plane inclined to the H  plane was shown in Fig. 146. 
Let now an ellipse with the semiaxes a and b lie in such a plane. Its projection 
may sometimes turn out to be a circle with the diameter equal to the minor 
axis of the ellipse. This will happen when the angle between the plane con
taining the ellipse and] the H  plane is defined by the relationship cos a =
(Fig. 150). The obtained circle will serve as the projection of a number 
of ellipses if the angle a and the dimension a are varied, and b is kept un
changed. Let us imagine a right circular cylinder with a vertical axis (Fig. 
151); the inclined sections of this cylinder are ellipses whose minor axis is 
equal to the diameter of the cylinder.
*-23012
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QUESTIONS TO SECS. 20-21

1. How is a vertical projecting plane drawn through an oblique line 
represented in the drawing?

2. How are the projections of the centroid constructed in the given draw- 
ing of a triangle?

3. What can the projections of a circle represent depending on the posi
tion of its plane relative to the projection planes?

4. May we consider the ellipse as a “compressed” circle?
5. What is the compression coefficient of an ellipse?
6. Does the ellipse have: (a) axes of symmetry, (b) a centre of symmetry?
7. What diameters of the ellipse are called: (a) the axes, (b) conjugate 

diameters?
8. How are the axes of an ellipse constructed given its conjugate dia

meters?



CHAPTER 4

THE RELATIVE POSITIONS OF TWO PLANES. 
THE RELATIVE POSITIONS OF A 
STRAIGHT LINE AND A PLANE

Sec. 22. A Review of the Relative Positions 
of Two Planes, of a Straight Line and a Plane

Two planes may be mutually parallel or intersect.
Let us consider the case of parallelism of two planes. I f  the planes P and 

Q are parallel (Fig. 152), then it is always possible to construct in either of 
them two intersecting lines so that the lines o f one plane are respectively 
parallel to the two lines o f the other.

This is the main test in determining whether two planes are parallel or not. 
The traces of both planes may, for instance, serve as such intersecting lines: 
i f  two intersecting traces of one plane are parallel to like traces of the other 
plane, then the planes are mutually parallel (Fig. 153, where Ph is parallel 
to Qh, and Pv is parallel to Qv).

Figure 154 demonstrates parallel vertical projecting planes specified by 
triangles ABC and DEF. Their parallelism is determined by the parallel 
vertical projections a'b'c' and d f ' e '. If these planes are represented by their 
traces on V and 77, then, the same as in Fig. 153, both the vertical and the 
horizontal traces will be respectively parallel. Obviously, if it is known that 
two parallel lines are vertical projecting, then in some cases we may confine 
ourselves to giving in the drawing only their vertical traces, as is shown 
below in Fig. 166 (Tlv is parallel to T2v). For horizontal projecting planes 
(if it is known that they are mutually parallel) it is sufficient in analogous 
cases to draw their horizontal traces parallel to each other.

Let us consider the case of mutual intersection of two planes. If the planes 
are specified by their traces, then it is easy to find out that these planes inter
sect : i f  at least one pair o f like traces intersect, then the planes intersect. For 
instance, in Fig. 155 Pv is parallel to Qv> but Ph and Qh intersect: the planes 
P and Q intersect.

The foregoing refers to planes specified by intersecting traces. But if both 
planes have on H  and V traces parallel to the *-axis, then these planes may 
either intersect, or be parallel. To judge about the relative positions of such
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planes it is advisable to construct their third traces: if the traces of both 
planes on the third plane of projection are also parallel, then the planes are 
parallel (Fig. 156: Qh \ | Rk9 Qv \ | Rv, and Qw \ \ Rw)\ but if their third traces 
intersect, then the planes intersect (as in Fig. 157). Obviously, if the traces 
parallel to the x-axis are arranged, for instance, in such a succession: Rv, 
Qv, Rf» Qh, then the planes cannot be parallel, and therefore there is no need 
to construct the traces Rw and Qw.

This is how the problem of the relative positions of two planes is solved 
when they are specified by their traces. Now if planes are specified not by 
traces, but in some other way, and it is required to find out whether they 
intersect, then, in general, we have to resort to some auxiliary constructions. 
Examples of such constructions will be given below.

Let us now consider the relative positions of a straight line and a plane in 
space. The following cases are possible: (a) the line belongs to the plane, 
(b) the line intersects the plane, and (c) the line is parallel to the plane.

If it is impossible to determine the relative positions of a line and a plane 
directly from the drawing, then it is recommended to use some auxiliary 
constructions which make it possible to reduce the problem of the relative
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positions of a line and a plane to the problem of the relative positions of the 
given line and an auxiliary line. To this effect in Fig. 158 we pass an auxiliary 
plane S  through the given line AB and establish the relative positions of the 
two lines AB and MN, the latter being the line of intersection of the auxiliary 
plane S  and the given plane P. Three cases are possible here:

(1) The lines MN  and AB coincide; this corresponds to the case of AB 
belonging to the plane P.

(2) The line MAT intersects the line AB; this corresponds to the case of AB 
cutting the plane P.

(3) The line MN is parallel to the line AB ; this corresponds to the case of 
AB being parallel to the plane P.

Hence, the considered method of determining the relative positions of a 
straight line and a plane consists in the following:

(1) An auxiliary plane is passed through the given line and the line of inter
section of this plane and the given plane is constructed;

(2) The relative positions of the given line and the line of intersection of the 
planes are established; the found positions determine the relative positions of 
the given line and plane.

This method of auxiliary planes is widely used in carrying out constructions 
when determining the relative positions of various surfaces and of lines and 
surfaces.
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Auxiliary planes are usually chosen so as to simplify all necessary con
structions. It may sometimes turn out, for instance, that horizontal or 
vertical planes, horizontal- and vertical-projecting planes, which are, in 
general, quite suitable as auxiliary planes, cannot be used at all or their 
usage will make the appropriate constructions rather complicated even if 
compared with oblique planes taken as auxiliary planes. When auxiliary 
planes are to be used in solving this or that problem, they must be adequately 
chosen so that the constructions involved are as simple as possible and their 
number is reduced to minimum.

Sec. 23. The Intersection of a Straight Line with 
a Plane Perpendicular to One or Two Planes of Projection

A plane perpendicular to a projection plane is projected on this plane into 
a straight line. The corresponding projection of the point in which some straight 
line cuts such plane must lie on this line (which is the projection of the plane).

In Figure 159 the vertical projection k ' of the point of intersection of the 
line AB with the triangle CDE is determined as the intersection of the pro
jections a'b' and cV, since the triangle is projected on the V plane into a 
straight line. Knowing the point k \  we determine the position of the projec
tion k . Since a portion of the line AB in the direction from K  to B is found 
under the triangle and therefore is invisible, in the drawing this portion of 
the line is drawn in a dashed line.

InFigure 160 the vertical trace of the plane Tis its vertical projection. Th e 
projection k f is determined as the intersection of the projection a'b' and 
the trace Tv.

Figure 161 gives an example of constructing the projections of the point 
of intersection of a straight line with a horizontal projecting plane.

For the sake of obviousness the projections of segments of the straight 
line cutting the plane are represented in different ways: some of them are 
drawn in continuous lines, the others in dashed lines. This is done with the 
following considerations in mind:

1. The given plane is conventionally considered to be opaque, that is 
why all points and lines located with respect to the viewer beyond the plane 
will be invisible though they are situated in the first quadrant. Points and 
lines are visible if they are located on viewer’s side of the plane. Let us agree 
that the viewer is located in the first octant at an infinite distance from the 
corresponding plane of projection.

2. Visible line segments are drawn with continuous lines, and invisible 
ones with dashed lines.

3. When a straight line cuts a plane, a portion of this line becomes in
visible for the viewer. The point of intersection of a line and a plane separates 
the line into visible and invisible portions.



CH. 4. RELATIVE POSITIONS OF TWO PLANES 87

Fig. 161

4. The problem of visibility of a line may always be reduced to the pro
blem of visibility of points. Furthermore, not only a plane can hide a point; 
a point may hide another point as well (see Fig. 87).

5. I f  several points are situated on a common projecting line9 then only one 
o f them will be visible:

(a) with respect to the //plane—this will be the point most distant from H ;
(b) with respect to the V plane—the point most distant from V;
(c) with respect to the W plane—the point most distant from W.
6. If we are given a drawing with the axes of projection, then visibility 

of points lying on a common projecting line is determined by the distances 
of their corresponding projections from the projection axis:

(a) with respect to the H  plane the visible point is one whose vertical pro
jection is farther from the x-axis;

(b) with respect to the V plane the visible point is one whose horizontal 
projection is farther from the x-axis;

(c) with respect to the W plane the visible point is one whose horizontal 
projection is most distant from the y-axis.

How must we proceed if a drawing has no axes of projection? Let us 
consider Fig. 162. Points 1 and 2 of two skew lines are situated on a common 
projecting line perpendicular to the V plane, and points 3 and 4 on a pro
jecting line perpendicular to the H  plane.

The point of intersection of the horizontal projections of the given lines 
represents the merged projections of two points of which point 4 belongs 
to the line AB9 and point 3 to the line CD. Since 3'3 is longer than 4'4, point 
3 belonging to the line CD is visible with reference to the H  plane, while 
point 4 is hidden by point 3.

The point of intersection of the vertical projections of the lines AB and 
CD also represents merged projections of two points 1 and 2, of which point 
1 belongs to the line AB9 and point 2 to the line CD. Since IV  is longer than 
22', we conclude that point 1 is visible with reference to the V plane, thus 
hiding point 2.

This is a general method, and it is applicable to drawings supplied with 
the projection axes as well.
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Sec. 24. Constructing the Line of Intersection 
of Two Planes

A straight line obtained as mutual intersection of two planes is completely 
defined by two points either o f which belongs to both planes.

For instance, the straight line K\K2 (Fig. 163) of intersection of the 
plane specified by the triangle ABC and the plane Q specified by two lines 
DE and DF passes through the points Ki and K2\ but just at these points 
the lines AB and AC of the first plane intersect the plane Q, i.e. the points 
Ki and K2 belong to both planes.

Consequently, in the general case, to construct the line o f intersection o f 
two planes we have to find two arbitrary points either o f which belongs to both 
planes; these points will define the line o f intersection of the planes.

To find the two required points we have usually to carry out special con
structions. But if at least one of the intersecting planes is perpendicular to a 
plane of projection, then the construction of the projections of the line of 
intersection is simplified. Let us begin with such a case.

Figure 164 shows the intersection of two planes one of which (specified 
by the triangle DEF) is perpendicular to the V plane. Since the triangle DEF 
is projected on the V plane into a straight line (<df%  the vertical projection 
of the line of intersection of the two given triangles represents a line segment 
k[kf2 on the projection df ' .  The further construction is clear from the draw- 
ing.

Another example is given in Fig. 165: a horizontal projecting plane S  
intersects the plane of the triangle ABC. The horizontal projection of the 
line of intersection of these planes (the line segment mn) is determined on the 
trace 5;,.

Now we are going to consider the general case o f constructing the line o f 
intersection of two planes.

Let one of the planes (P) be specified by two intersecting lines, and the 
other (g) by two parallel lines. The appropriate construction is shown in 
Fig. 166. The line K\K2 is obtained as a result of mutual intersection of the 
planes P and g , or in brief notation: P xQ  = K\K2.
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To determine the positions of the points K± and K2 we take two auxiliary 
vertical projecting planes (Ti and T2) which intersect either of the planes 
P and Q. The plane 7\, intersecting the planes P and Q, yields two straight 
lines whose projections are P2\ 1-2 and 3'4'9 3-4. The intersection of these 
lines contained in the plane 7 \ determines the first point (Xi) defining the 
line of intersection of the planes P and Q.

Introducing then the plane T2 we obtain the lines of its intersection with 
the planes P and Q. In the drawing their projections are: 5'6', 5-6 and 7'8\ 
7-8. The intersection of these lines contained in the plane T2 determines the 
second point (K2) common to P and Q.

Having now the projections and k 2, we find the projections k[ and k'2 
on the traces Tiv and T2v. This determines the projections k\k2 and k[k2 of 
the required line of intersection of the planes P and Q (the projections thus 
determined are drawn with a dot-and-dash line).

When carrying out the construction the following should be borne in 
mind: since the auxiliary secant planes T± and T2 are mutually parallel, 
then, on constructing the projections 1-2 and 3-49 we take only one point 
for either of the projections 5-6 and 7-£, say 5 and <5, since 5-6 is parallel to 
1-2 and 7-8 is parallel to 3-4.

In the above construction we took two vertical projecting planes as auxili
ary planes. Of course, we might take some other planes as well, for instance^ 
two horizontal planes, or one horizontal and one vertical planes, and so on. 
But all this does not change the nature of construction. We may come 
across the following case. Suppose two horizontal planes were taken as 
auxiliary planes, and the horizontal lines obtained as their intersection with
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the planes P and Q turned out to be mutually parallel. Fig. 167 shows that 
P and Q intersect, though their horizontal lines are parallel. Hence, having 
obtained parallel horizontal projections of the horizontal lines AB and CD 
and knowing that the planes are not necessarily parallel (they may, for in
stance, intersect along a common horizontal line), we have to test the planes 
P  and Q, using for this purpose, say, a horizontal projecting plane (see Fig.
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Fig. 168

167): if the lines along which the auxiliary plane S  intersects P and Q would 
appear to be also parallel, then the planes P and Q do not intersect—they 
are parallel to each other. In Figure 167 these lines intersect at point K, 
through which there just passes the line of intersection of the planes P and 
<2 parallel to the lines BA and CD.

I f  planes are specified by their traces on the projection planes, then it is 
natural to find the points determining the lines o f intersection o f the planes at 
the points o f intersection o f like traces o f the planes (Fig. 168): the line passing 
through these points is common to both planes, i.e. is the line o f their inter
section.

The above-considered method on constructing the line of intersection ®f 
two planes (see Fig. 166) may, of course, be used in the case when the planes 
are specified by their traces. Here the role of auxiliary secant planes is played 
by the projection planes themselves:

P X H  =  Ph; Q x H  =  Qh\ PhXQh =  M\
P X V  = PV; Q X V  =  QV; Pvx Q v = N.

The points of intersection of like traces of planes are the traces of the line 
o f intersection of these planes. Therefore, to construct the projections of the 
line of intersection of the planes P and Q (Fig. 168) proceed as follows:
(1) find m as the point of intersection of the traces Ph and Qh and n' as the 
point of intersection of the traces Pv and Qv; using m and n', determine the 
projections m' and n; (2) draw straight lines m'n' and mn.

Figures 169-171 give a few examples when the direction of the line of 
intersection is known. In this case it is sufficient to have only one point of 
intersection of the traces and then to draw a line through this point, proceed
ing from the positions of the planes and their traces.
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Fig. 170

QUESTIONS TO SECS. 22-24

1. What are the relative positions of two planes?
2. What is the test for parallelism of two planes?
3. What are the relative positions of the vertical traces of two parallel 

vertical projecting planes?
4. What are the relative positions of the horizontal traces of two parallel 

horizontal projecting planes?
5. What are the relative positions of like traces of two parallel planes?
6. Does the intersection of at least one pair of like traces of two planes 

serve as a test for intersection of these planes ?
7. How may we determine the relative positions of a straight line and a 

plane?
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8. How do we construct the line of intersection of a straight line and a 
plane perpendicular to one or two planes of projection ?

9. What point of those situated on a common perpendicular to (a) the 
H plane, (b) the V plane is considered to be visible on the respective planes?

10. How do we construct the line of intersection of two planes at least 
one of which is perpendicular either to H or to V?

11. What does the general method of constructing the line of intersection 
of two planes consist in?

Sec. 25. The Intersection of a Straight Line 
with an Oblique Plane

To construct the point of intersection of a straight line and an oblique 
plane proceed as follows (Fig. 158):

(1) draw an auxiliary plane (S) through the given line (AB);
(2) construct the line (MN) of intersection of the given (P) and auxiliary 

(S) planes;
(3) determine the position of the point (K) o f intersection of the given (AB) 

and constructed (MN) lines.
Fig. 172 shows the construction of the point of intersection of a straight 

line FK with an oblique plane specified by two intersecting lines AB and CD.
An auxiliary vertical projecting plane S  is passed through the line FK. 

The choice of a vertical projecting plane is explained by the fact that in this 
case it is convenient to construct the points of intersection of its vertical 
trace with the projections a'bf and c'd'. Using the points m' and n\ we find 
the horizontal projections m and n and thus determine the line MN  along 
which the auxiliary plane S  intersects the given plane P. We then find the 
point k at which the horizontal projection of the line directly, or when ex
tended, intersects the projection mn. Finally, we determine the vertical pro
jection of the point of intersection, i.e. the point k'.

Figure 173 illustrates the construction of the point of intersection of a 
line MN  with a plane specified by a triangle ABC. The succession of construc
tion follows the pattern of Fig. 172, the only difference being that the auxili
ary plane (this time a horizontal projecting one) here is indicated only by 
one trace Th passing through the projection mn. The plane T  cuts the triangle 
ABC along the line DE. But we can do without Th as well: imagining the 
auxiliary horizontal projecting plane passing through MN, we represent by 
ed and e'd' the line segment ED along which the horizontal projecting plane 
passed through MN  intersects the triangle.

Considering that a straight line and an opaque triangle are given in space, 
let us determine the visible and invisible portions of the line MN  with respect 
to the planes H  and V.

There are two coincident horizont al projections of two points at point 
e on the H  plane, one of which (the vertical projection e[) belongs to the
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line MN9 and the other (the vertical projection e') to the side AC of the 
triangle.

From the location of the vertical projections e'x and e' it follows that the 
portion KM  of the line is above the triangle and, hence, on the horizontal 
projection the line segment mk is entirely visible, whereas the line segment 
kd is invisible.

On the vertical projection the point/ '  represents the coincidentFprojections. 
of two points, one of which belongs to the line MN, the other belonging 
to the side AB of the triangle. Judging by the location of the horizontal pro
jections /  and /i ,  we conclude that the portion MK  of MN  is behind the 
triangle and, hence, on the vertical projection the line segment f 'k '  is in
visible, and the line segment k'ri is visible.

Figures 174-176 give examples of constructing the point of intersection o f 
a straight line and an oblique plane represented by its traces. In the first 
example through the line AB we draw a horizontal projecting plane S, and 
in the second (Fig. 175), a horizontal plane. It turns out to be possible to  
proceed this way, since in the second case AB is a horizontal line.

The straight line represented in Fig. 176 is perpendicular to the H  plane* 
therefore the horizontal projections of all points of this line merge into one 
point. Hence, the position of the projection k  of the required point of inter
section of the line AB with the plane P is known. The position of the pro- 
jection k' is determined with the aid of a horizontal line.
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Fig. 174

Sec. 26. Constructing the Line of Intersection 
of Two Planes Using the Points of Intersection 

of Straight Lines with a Plane

In Section 24 we discussed the general method for constructing the line 
of intersection of two planes, namely, the use of auxiliary secant planes (see 
Fig. 166). Let us now consider another method of construction as applied 
to oblique planes. This method consists in that we find the points of inter
section of two straight lines belonging to one of the planes with the other plane. 
Consequently, the student should know how to construct the point of inter- 
section of a straight line and an oblique plane, which is set forth in Sec. 25.

Figure 177 shows the triangle ABC intersected by a plane specified by two 
parallel lines {DE and FG). The construction is reduced to constructing the 
points K\ and K2 at which the lines DE and FG cut the plane containing the 
triangle and to drawing a line segment through these points. Imagining verti
cal projecting planes drawn through DE and FG, we find the parallel lines 
along which these planes intersect the triangle. One of them is represented 
by the projections 1-2 and 1'2', the other only by one point 3\ 3 through 
the horizontal projection of which a straight line is drawn parallel to the 
projection 1-2.

On determining the projections ki and k 2 we find the projections k[ and 
kg and the projection of the line segment k\k2.

Of course, to the case under consideration the general method is appli
cable as well (see Fig. 166), but we would then have to draw more lines,, 
than it has been done in Fig. 177.

Figure 178 demonstrates the construction of the line of intersection o f 
two triangles ABC and DEF with visible and invisible portions of these 
triangles indicated.

The line K\K2 is constructed using the points of intersection of the sides 
AC and BC of the triangle ABC with the plane containing the triangle DEF. 
An auxiliary vertical projecting plane drawn through AC (it is not shown 
in the drawing) intersects the triangle DEF along a straight line represented
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Fig. 178

by the projections i'2 ' and 1-2; the intersection of the projections ac and 
1-2 yields the horizontal projection of the point Ki of intersection of the 
line AC and the triangle DEF; then the vertical projection k[ is constructed. 
The point K2 is found in the same way.

The examples given in Figs. 177 and 178 raised the problem of separating 
plane figures into portions, visible and invisible for the viewer, since planes 
are considered conventionally to be opaque. The visible portions of the tri
angles ABC are hatched in the mentioned drawings (see also Fig. 173).

Figure 179 gives one more example of construction of the line of inter
section of two triangles. In this case we may assume with equal grounds that 
the triangle ABC enters the slit made in the triangle DEF, or that the triangle 
DEF goes into the slit out in the triangle ABC. We have to agree: to what 
triangle this slit (along the line K\K2) belongs. Quite another thing with 
the triangles shown in Fig. 178: a slit is obviously out in the triangle DEF 
and the triangle ABC passes through this slit, thus cutting the triangle DEF.

The construction itself in Fig. 179 is reduced to finding the points Ki and 
K2 with the aid of vertical projecting planes Pi and P2, respectively.

We would like to underline once again that the use of dashed lines instead 
of continuous ones, as for example, in Figs. 159, 161, 164, 165 and 173 to 
179, is prompted by the desire to make the drawings more descriptive. If we 
proceed from the notion of a projection as a geometric image, then the 
question of ‘transparency’ or ‘opacity’ would no longer arise, of ‘visibility’



CH. 4. RELATIVE POSITIONS OF TWO PLANES 97

or ‘invisibility’: everything should be drawn with continuous lines. But to 
make drawings more obvious some conventions are introduced, the use of 
dashed lines being one of them.

QUESTIONS TO SECS. 25-26

1. What does the method for constructing the point of intersection of a 
straight line and a plane consist in?

2. What is the procedure of constructing this point (see Question 1)?
3. How is ‘visibility’ determined in the case of a line cutting a plane?
4. How is it possible to construct the line of intersection of two planes 

without using the general method described in Sec. 24?
5. How is ‘visibility’ determined in the case of mutual intersection of two 

planes?
6. In what respect do the cases considered in Figs. 178 and 179 differ 

from each other?

Sec. 27. Constructing a Straight Line and a Plane 
Parallel to Each Other

The construction of a straight line parallel to a given plane is based on the 
following statement known from geometry: a straight line is parallel to a 
plane if  this line is parallel to any straight line contained in the plane.

Through a given point in space we can draw an infinite number of straight
7 -23012
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lines parallel to a given plane. To obtain a unique solution an additional 
condition is required. For instance, it is required to draw through the point 
M  (Fig. 180) a straight line parallel to both the plane specified by the triangle 
ABC and the H  plane of projection (the latter being the additional condi
tion).

Obviously, the required line must be parallel to the line of intersection 
of both planes, i.e. must be parallel to the horizontal trace of the plane 
specified by the triangle ABC. In Figure 180 a horizontal line DC is used and 
then, parallel to this line, a straight line is drawn through the point M.

Let us solve the inverse problem: through a given point draw a plane 
parallel to a given straight line. The planes passing through a point A parallel 
to a line BC form a pencil of planes whose axis is a straight line passing 
through the point A and parallel to the line BC. And again, to get the unique 
solution a certain additional condition is required.

For instance, it is required to draw a plane parallel to the line CD not 
through a point, but through a straight line AB (Fig. 181). As is clear, AB 
and CD are skew lines. If it is required through one of the two skew lines 
to pass a plane parallel to the other line, then the problem has a unique solu
tion. Through the point B a straight line is drawn parallel to the line CD; 
the lines AB and BE determine then the plane parallel to the line CD.

How can we find out whether a given line is parallel to a given plane?
We may try to draw in this plane a straight line parallel to the given line. 

If we fail to construct such a line in the plane, then the given line and plane 
are not parallel to each other.

We can also try to find the point of intersection of the given line with the 
given plane. If we fail to find such a point, then the given line and plane are 
mutually parallel.
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Sec. 28. Constructing Mutually Parallel Planes

Let there be given a point K  through which it is required to pass a plane 
parallel to a plane specified by two intersecting lines AF and BF (Fig. 182).

Obviously, if through the point K straight lines CK and DK are drawn 
respectively parallel to the lines AF and BF, then the plane defined by the 
lines CK and DK will turn out to be parallel to the given plane.

Another example of construction is given in Fig. 183 (right). Through the 
point A a plane Q is drawn parallel to the plane F. First we draw through 
the point A a straight line a fortiori parallel to the plane F. This is a horizon
tal line whose projections are a'n' and an, the latter being parallel to P*. 
Since point N  is the vertical trace of the horizontal line AN, the trace Qv 
parallel to Fv will pass through this point and the trace Qh parallel to P/r 
through Qx. Hence, the planes O and P are mutually parallel, since their like 
intersecting traces are mutually parallel.

Figure 184 represents two parallel planes, one of them is specified by a 
triangle ABC, the other by parallel lines DEand FG. What verifies the paral
lelism of these planes? The fact that in the plane specified by the lines DE 
and FG we were able to draw two intersecting lines KM  and KN respectively 
parallel to the lines AC and BC contained in the other plane.

Of course, we might try to find the point of intersection of, say, the line 
DE and the plane of the triangle ABC. The failure would confirm parallelism 
of the planes.

QUESTIONS TO SECS. 27-28

1. What is the construction of a straight line to be parallel to a certain 
plane based on?

2. How is a plane drawn through a straight line parallel to a given line?
3. What defines the parallelism of two planes?
4. How is a plane parallel to a given plane passed through a given point?
5. How is parallelism of given planes checked in the drawing?

Sec. 29. Constructing a Straight Line and a Plane 
Perpendicular to Each Other

Of all possible positions of a straight line intersecting a plane we are 
going to point out the case when a line is perpendicular to a plane, and 
consider the properties of such a line.

Figure 185 shows a plane defined by two intersecting lines AN  and AM, 
AN  being a horizontal line and AM  a vertical line of the given plane. The 
line AB represented on the same drawing is perpendicular both to AN  and 
AM  and, hence, is perpendicular to the plane defined by them.

A perpendicular to a plane is perpendicular to any line drawn in this 
plane. But for the projection of a perpendicular to an oblique plane to be 
perpendicular to the like projection of a straight line contained in this
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plane, it is necessary that the straight line is a horizontal line, or a vertical 
line, or a profile line of the plane. Therefore, when it is desired to construct 
a perpendicular to a plane, two such lines are taken in the general case 
(for instance, a horizontal and vertical lines, as is shown in Fig. 185).

Thus, a perpendicular to a plane possesses the following property: its 
horizontal projection is perpendicular to the horizontal projection of a horizon
tal line, its vertical projection is perpendicular to the vertical projection of a 
vertical line, and its profile projection is perpendicular to the profile projection 
of a profile line o f the plane.

Obviously, when a plane is represented by its traces (see Fig. 186), we 
draw the following conclusion: if  a line is perpendicular to a plane, then the 
horizontal projection of this line is perpendicular to the horizontal trace of the 
plane, and the vertical projection is perpendicular to the vertical trace of the 
plane.

Thus, if in the system V, H the horizontal projection of a straight line is 
perpendicular to the horizontal trace of a plane and the vertical projection 
of the line is perpendicular to its vertical trace, then in the case of oblique 
planes (as in Fig. 186), as also of horizontal- and vertical-projecting planes, 
the line is perpendicular to the plane. But in the case of a profile projecting 
plane it may happen that a line is not perpendicular to this plane, though 
the projections of the line are respectively perpendicular to the horizontal 
and vertical traces of the plane. Therefore, in the case of a profile projecting 
plane it is necessary to consider also the relative positions of the profile 
projection of the line and the profile trace of the given plane and only after 
such an examination to determine whether the given line and plane are 
mutually perpendicular.



102 DESCRIPTIVE GEOMETRY

Obviously, in Fig. 187 the horizontal projection of a perpendicular to 
a plane coincides with the horizontal projection of a slope line drawn in the 
plane through the foot of the perpendicular.

In Figure 186 from point A a perpendicular is drawn to plane P (<a'c' is 
perpendicular to Pv, and ae to Ph), and the point E  is constructed at which 
the perpendicular AC cuts the plane P. The construction is accomplished 
with the aid of horizontal projecting plane Q passed through the perpen
dicular AE.

Figure 188 illustrates how a perpendicular is dropped to the plane defined 
by the triangle ABC. The perpendicular is drawn through the point A .

Since the vertical projection of a perpendicular to a plane must be 
perpendicular to the vertical projection of a vertical line contained in the 
plane, and its horizontal projection is perpendicular to the horizontal pro
jection of a horizontal line, drawn in the plane through the point A are 
a vertical line («a'd' and ad) and a horizontal line (<a'e' and ae). It goes 
without saying, that these lines should not necessarily be drawn through 
the point A.

Then the projections of the perpendicular are drawn: m'ri perpendicular 
to a'd' and mn perpendicular to ae. Why are the portions a'n' and am of the 
projections in Fig. 188 drawn with dashed lines? Because here we consider 
the plane specified by the triangle ABC, but not only this triangle: the 
perpendicular is located partially before the plane, and partially behind it.

Figures 189 and 190 show the construction of a plane passing through 
the point A perpendicular to the line BC. In Figure 189 the plane is represent
ed by its traces. We begin the construction with drawing through point A 
the horizontal line of the required plane: since the horizontal trace of the 
plane must be perpendicular to be, then the horizontal projection of the 
horizontal line must also be perpendicular to be. Therefore an is perpendic
ular to be. The projection a'n' is parallel to the x-axis, since it is a charac
teristic feature of a horizontal line. We then draw through the point n
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(which is the vertical projection of the vertical trace of the horizontal line 
AN) the trace Pv perpendicular to b'c\ obtain the point Px, and draw the 
trace Ph parallel to an (Ph is perpendicular to be).

In Figure 190 the plane is defined by its vertical line AM  and a horizontal 
line AN. These lines are perpendicular to BC (<a'm' is perpendicular to bfc\ 
and an to be); the plane defined by them is perpendicular to BC.

Since a perpendicular to a plane is perpendicular to any straight line 
drawn in this plane, then, on learning how to pass a plane perpendicular to 
a straight line, we can take advantage of this method for drawing a perpen
dicular from a point A to an oblique line BC. Obviously, we may plan the 
following procedure for constructing the required line:

(1) to pass through the point A a plane (designated by Q) perpendicular 
to BC;

(2) to determine the point K of intersection of the line BC with the 
plane Q\

(3) to join the points A and K  with a line segment.
The lines AK and BC are mutually perpendicular.
An example of appropriate construction is given in Fig. 191. Through 

the point A a plane (Q) is drawn perpendicular to BC. This is done with the 
aid of a vertical line, whose vertical projection a'f' is drawn perpendicular 
to the vertical projection b'c\ and a horizontal line whose horizontal 
projection is perpendicular to be.

Then the point K  is found at which the line BC pierces the plane Q. 
To this end a horizontal projecting plane S  (in the drawing it is specified 
only by the horizontal trace Sh) is drawn through the line BC. The plane S 
intersects the plane Q along a straight line whose projections are 1'2' 
and 1-2. The intersection of this line with the line BC yields the point K. 
The line AK is the required perpendicular to BC. Indeed, the line AK inter
sects the line BC and is contained in the plane Q perpendicular to the line 
BC; consequently, AK is perpendicular to BC.
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In Section 15 we showed (Fig. 92) how to draw a perpendicular from a 
point to a line. It was accomplished by introducing an additional plane into 
the system V, //, thus forming the system S, H  in which the plane S  is passed 
parallel to the given line. We recommend to compare the constructions 
given in Figs. 92 and 191.

Figure 192 shows an oblique plane P passing through the point A , and 
a perpendicular AM  to this plane extended to intersect the H  plane at point b.

The angle ai between the planes P and H  and the angle a between the 
line AM  and the plane H  are the acute angles of a right-angled triangle 
bAm and, hence, a i+ a  =  90°. Analogously, if the plane P forms an angle 
/?i with the V plane, and the line AM  perpendicular to P forms an angle 

with the V plane, then = 90°. From this first of all it follows that 
an oblique plane which must form an angle a i with the H  plane, and an angle 
/?i with the V plane may be constructed only if 180° >  oci+Pi >  90°.

Indeed, adding a i+ a  = 90° and/?i-f/? =  90° termwise, we get:ai+ /?i+ 
+a+/S = 180°, i.e. oci+fti <  180°, and since a+ /? <  90° (see Sec. 13), 
we have oci+Pi >  90°. If we take ai+/?i =  90°, then a profile projecting 
plane is obtained, and if oci+fii = 180° is taken, then we get a profile plane, 
i.e. in both cases we obtain not an oblique plane but planes of particular 
positions.

Sec. 30. Constructing Mutually Perpendicular Planes

A plane Q perpendicular to a plane P can be constructed in two ways: 
(1) it is passed through a line perpendicular to the plane P; (2) it is drawn 
perpendicular to a line contained in the plane P or in a plane parallel to this 
plane. To get a unique solution additional conditions are required.
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Figure 193 shows the construction of a plane perpendicular to the plane  ̂
specified by the triangle CDE. An additional condition here is that the re
quired plane must pass through the line AB. Consequently, the required 
plane is defined by the line AB and a perpendicular to the plane containing, 
the triangle. To draw this perpendicular to the plane CDE we take in it a 
vertical line CN and a horizontal line CM: if b'f' is perpendicular to c'nr 
and bf to cm, then BF is perpendicular to the plane CDE.

The plane defined by the intersecting lines AB and BF is perpendicular 
to the plane CDE, since it passes through a perpendicular to this plane. 
In Figure 194 a horizontal projecting plane S  passes through the point K  
perpendicular to the plane specified by the triangle ABC. Here the addi
tional condition is perpendicularity of the required plane to two planes at 
once: to the plane ABC and to the H  plane. Therefore the answer is a 
horizontal projecting plane. And since it is passed perpendicular to the 
horizontal line AD, i.e. to a line belonging to the plane ABC, the plane S  
is perpendicular to the plane ABC.

May perpendicularity of like traces of planes serve as a test for per
pendicularity of the planes themselves?

To obvious cases, when this is so, belongs mutual perpendicularity of 
two horizontal projecting planes whose horizontal traces are mutually 
perpendicular.
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The same can be said about mutual perpendicularity of the vertical 
traces of the vertical projecting planes. These traces are mutually perpen
dicular.

Let us consider (Fig. 195) the horizontal projecting plane S  which is 
perpendicular to an oblique plane P. If the plane S  is perpendicular to the 
planes H  and P, then S  is perpendicular to Ph as to the line of intersection 
of the planes P and H. Hence, Ph is perpendicular to S  and, consequently, 
Ph is perpendicular to Sh as to one of the lines contained in the plane S.

Thus, perpendicularity of the horizontal traces of an oblique plane and 
a horizontal projecting plane corresponds to mutual perpendicularity of 
these planes.

Obviously, perpendicularity of the vertical traces of a vertical projecting 
and an oblique planes also corresponds to mutual perpendicularity of these 
planes.

But if like traces o f two oblique planes are mutually perpendicular, then 
the planes themselves are not perpendicular to each other, since none of the 
conditions set forth at the beginning of this section is met here.

We conclude this section by considering Fig. 196. Here we come across 
a situation when both pairs of like traces, as also the planes themselves, are 
mutually perpendicular: both planes occupy particular positions, namely, 
R  is a profile projecting plane.

Sec. 31. Constructing the Projections of an Angle 
Between a Straight Line and a Plane, 

and Between Two Planes

If a straight line is not perpendicular to a plane, then the angle between 
the line and the plane is defined as an angle between this line and its projection 
on the given plane.
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For angles between a straight line and the projection planes see Sec. 13.
Figure 197 represents a straight line AB intersecting the plane P at 

point D; the angle a is formed by the segment BD of the given line and the 
projection BPD of this segment on the plane P.

The construction of the projections of the angle between a line AB and 
a plane P is carried out in Fig. 198. The plane P is specified by its horizontal 
(the projections p'h' and ph) and vertical (the projections p’f  and pf) 
planes.

The construction is accomplished in the following succession:
(a) the point D of intersection of the line AB with the plane P is found, 

for which purpose a horizontal projecting plane S  is passed through AB;
(b) a perpendicular is drawn from the point A to the plane P;
(c) the point E of intersection of this perpendicular with the plane P is 

found;
(d) straight lines are drawn through the points d' and e\ d and e, thus 

determining the projections of the line AB on the plane P.
The angle a'd'e' represents the vertical projection of the angle between 

AB and the plane P, and the angle ade the horizontal projection of this 
angle.

The construction of projections of an angle between a line and a plane 
is considerably simplified if the plane is not an oblique one, since in such 
cases the point of intersection of the given line and the plane is determined 
without additional constructions.
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Two intersecting planes form four dihedral angles. Confining ourselves 
to considering the angle between P and Q shown in Fig. 199, let us construct 
its plane angle for which purpose we intersect the edge MN  of the dihedral 
angle by a plane S  which is perpendicular to MN.

The projections of the plane angle are constructed in Fig. 200. The plane 
P is specified by the triangle AMN, the plane Q by the triangle BMN.

(a) A plane S  passing through the point N  is constructed perpendicular 
to MN  (this plane is specified by its vertical line NF and horizontal line 
NH);

(b) the line of intersection of the planes P and S  (the line EN) is con
structed; since the plane S  is passed through the point N  belonging to the 
plane P, we had to find only the point E  for which purpose an auxiliary 
plane T  is taken;

(c) the line of intersection of the planes Q and S  (the line NG) is found; 
here also we had to determine only point G (an auxiliary plane Q).

The point N  is the vertex of the required plane angle whose horizontal 
and vertical projections are represented by the angles eng and e'n'g\ re
spectively.

In Figure 195 the projections of the plane angle which measures the 
dihedral angle formed by the plane P with the H  plane are constructed. 
Since for obtaining a plane angle we have to pass a plane perpendicular to 
the edge of the dihedral angle, a plane S  is drawn perpendicular to the 
trace Ph to get the angle of inclination of the plane P to the H  plane. Analo
gously, to obtain the angle between the plane P  and the V plane we would 
have to pass a plane perpendicular to the trace Pv.

In Figure 195 the vertical projection of the required angle is represented 
by the angle rirrin, and its horizontal projection coincides with the trace Sh- 
The magnitude of the angle can be determined by constructing a right- 
angled triangle whose legs are n'n and mn.
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QUESTIONS TO SECS. 29-31

1. How are the projections of a perpendicular to a plane arranged?
2. What are the relative positions of the horizontal projections of a 

perpendicular to a plane and of its slope line drawn through the point of 
intersection of the perpendicular with the plane?

3. How is a plane perpendicular to a given line passed (through a point 
on the line and through a point outside the line)?

4. How is a perpendicular drawn from a point to an oblique line (with 
the aid of a plane perpendicular to the line, and by introducing an additional 
plane of projection into the system F, H)1

5. How are mutually perpendicular planes constructed?
6. In what cases does mutual perpendicularity of one pair of like traces 

of planes correspond to mutual perpendicularity of the planes themselves?
7. In what case is mutual perpendicularity of planes in the system F, H 

represented by mutual perpendicularity of their vertical traces? In what 
case is mutual perpendicularity of planes in the system F, H  represented 
by mutual perpendicularity of their horizontal traces?

8. Are oblique planes mutually perpendicular if their like traces are 
perpendicular to each other?

9. How is the angle between a straight line and a plane defined and what 
is the procedure of constructing the projections of this angle in the drawing?

10. How do we proceed in constructing the projections of the plane angle 
for a given dihedral angle?



CHAPTER 5

THE METHOD 
OF REPLACING PROJECTION PLANES 
AND THE METHOD OF REVOLUTION

Sec. 32. Bringing Straight Lines and Plane 
Figures to Particular Positions Relative 

to Projection Planes

Straight lines and plane figures specified in particular positions relative 
to the planes of projection (see Secs. 11 and 19) considerably simplify relevant 
constructions and solutions of problems, and sometimes permit us to get 
the answer directly from the given drawing or with the aid of simple con- 
structions.

For example, the determination of the distance of a point A to the hori
zontal projecting plane (Fig. 201) specified by the triangle BCD is reduced1 
to drawing a perpendicular from the projection a to the projection represented 
by the line segment bd. The required distance is determined by the line seg
ment ak.

The methods set forth in the present chapter make it possible to pass 
from oblique positions in which straight lines and plane figures are specified 
in the system F, H  to particular positions in the same system or in an addi
tional one.

This is achieved by:
(1) introducing additional planes of projection so that a straight line or 

a plane figure, without changing its position in space, is brought to a parti
cular position in a new system of projection planes (the method of replacing 
projection planes);

(2) changing the position of a straight line or a plane figure by revolving 
it about a certain axis so that a line or a figure is brought to a particular 
position relative to a fixed system of projection planes (the method of revo
lution and its particular case—the coincidence method).

The introduction of additional planes of projection into the system F, H 
was considered in Sec. 8, and examples of constructions in additional 
systems were given in Secs. 13 and 15. Now we are going to consider this in 
more detail.
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Sec. 33. The Method of Replacing Projection Planes* **

General. The main point of this method consists in that the positions of 
points, lines, plane figures, and surfaces in space remain unchanged, while 
I he system F, H  is supplemented with planes forming (with F  or H , or with 
one another) systems of two mutually perpendicular planes taken for the 
planes of projection.

Each new system of projection planes is chosen so as to obtain a position 
most convenient for carrying out the required construction.

In a number of cases for obtaining a system of projection planes suitable 
lor solving the given problem it turns out to be sufficient to introduce 
only one plane, say a plane S  perpendicular to H, or a plane T  perpendicular 
to F; S  appearing to be a horizontal projecting plane and T  a vertical 
projecting plane. If the introduction of one plane, S  or 71, is not sufficient 
to solve the problem, the basic system of planes should be successively 
supplemented with new planes: for instance, introducing a plane S  perpen
dicular to the H  plane, we get the first new system—S', H , and then, intro
ducing a certain plane T  perpendicular to S', we pass to the second new 
system. In addition, the plane T  turns out to be an oblique plane in the 
principal system F, H . Thus, a successive passage from the system F, H  
lo the system S’, T  occurs via an intermediate system S', H.

If the planes S  and T  are yet insufficient to solve the problem completely,, 
we may pass over to a third new system by introducing one more plane 
perpendicular to T.

When constructing in a new system of projection planes, the rules per
taining to the position of the viewer established for the system of planes F  
and H (see Sec. 7) must be strictly observed.

*We use here the usual term ‘replacing’, though in reality the projection planes V
**ml H  are retained, being only supplemented with additional planes of projection.
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We shall designate the axis in the form of a common fraction assuming 
that the stroke lies on this axis. The planes denoted, as usual, by letters will 
represent the numerator and denominator of the fraction, either letter being 
put on that side of the axis where the corresponding projections should be 
located.

Introducing One Additional Plane of Projection into the System V, H.
In most cases the additional plane introduced into the system V,H  as a plane 
of projection is chosen according to a certain condition to be met in the 
course of construction. An example is given in Fig. 77: since it was required 
to determine the true length of the line segment AB and the angle between 
the line AB and the H  plane, the plane S  was arranged perpendicular to the 
H  plane (forming a system S', H) and parallel to the line segment AB.

In Fig. 202 the plane T  is also chosen to serve quite a definite purpose,
i.e. to determine the angle between the line CD and the V plane. That is 
why T  is perpendicular to V and at the same time the plane T  is parallel to 
the line CD (the axis T/V  is parallel to c'd'). In addition to the required 
angle /?, the true length of the line segment CD is also determined (it is 
represented by the projection ctdt).

In the case represented in Fig. 203 the choice of the plane T  is fully 
dependent on the task: to determine the true size of the triangle ABC. 
Since in this case the plane defined by the triangle is perpendicular to the V 
plane, to get an untwisted projection of the triangle we have to introduce 
into the system V9 H  an additional plane which would meet the following 
two conditions: the plane T  must be perpendicular to the V plane (to form 
a new system F, T), and the plane T  must be parallel to the plane containing 
the triangle ABC (which enables the triangle ABC to be projected without 
twisting). The new axis V/T is drawn parallel to the projection a'c'b'. The 
projection atbtct is constructed by laying off from the new axis line segments 
equal to the distances of the points a, b, and c from the axis VlH . The true 
shape of the triangle ABC is represented by its new projection atbtc, .
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Fig. 204

Figure 204 gives an example of construction in which the plane Q is not 
specified. Any horizontal-projecting or vertical-projecting or profile plane 
may be chosen to be the Q plane, provided it is convenient for constructing 
the required projections. The purpose of construction is to get the projec
tions of the point of intersection of two profile lines AB and CD contained 
in a common profile plane*. Fig. 204 shows a horizontal projecting plane Q 
taken as an additional plane of projection.

The relative positions of the new projections aqbq and cqdq define the 
relative positions of the given lines: in the given case the lines intersect. 
The point kq is the projection of the point of intersection on the plane Q. 
Using this point, we find the projections k and k

The introduction of an additional plane of projection enables us, for in
stance, to transform a drawing so that an oblique plane specified in the sys
tem F, H  becomes perpendicular to the additional plane of projection. 
An example is given in Fig. 205 where an additional plane S  is drawn so that 
the oblique plane defined by the triangle ABC has become perpendicular to 
the plane S. How is this obtained?

In the triangle ABC a horizontal line AD is drawn. The plane perpen
dicular to AD is perpendicular to ABC and at the same time to the H  plane 
(since AD is parallel to H). This is satisfied by the plane S , the triangle ABC 
is projected on it into a line segment bsc5. And if an oblique plane is specified

♦The fact that straight lines AB and CD intersect follows from the relative positions 
of the points A and B, C and D.
8-23012
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by its traces (Fig. 206), then the plane S  should be passed perpendicular to 
the trace Ph, i.e. to the line of intersection of the planes P and H. As a result,, 
the plane S  will turn out to be perpendicular both to the H  plane (i.e. will 
be an additional plane of projection) and to the plane P. We now have to 
construct the trace of the plane P on the plane S. Since P is perpendicular 
to 5, the projection of any point of the plane P on the plane S  is obtained 
on the line of intersection of these planes, i.e. on the trace Ps. In Fig. 206 
a point N  is taken on the trace PV9 its projection ns is constructed (nsl  =  n’ri)~ 
The trace Ps passes through ns and also through the point of intersection 
of the trace Ph with the axis S/H.

The constructions carried out in Figs. 205 and 206 determine the angle oc 
of inclination of the given planes to the H  plane. If a plane T  (see Fig. 207) 
is taken perpendicular both to the F  plane and to the plane specified by 
the triangle ABC (for which purpose the axis VjT has to be drawn perpen
dicular to a vertical line of this plane), then the angle ft of inclination of the 
plane ABC to the F  plane will be determined.

Introducing Two Additional Planes of Projection into the System F, H. 
We are going to consider the introduction of two additional planes of pro
jection into the system F, H  using the following example.

Suppose it is required to arrange an oblique line specified in the system 
F, H  perpendicular to the additional plane of projection. Can this be achieved 
by introducing only one additional plane? No, it is impossible, since 
such a plane being perpendicular to an oblique line will become an oblique 
plane in the system F, H9 i.e. perpendicular neither to H, nor to F. But this 
will violate the condition forseen for introducing supplementary planes of 
projection (see Sec. 8).

Is it possible to avoid this difficulty and still apply the method of replacing 
the projection planes? Yes, but we have to adhere to the following proce
dure: to pass over from the system F, H  to the system S9 H  in which S  is
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perpendicular to H  and S  is parallel to AB, and then to pass over to the sys
tem S9 T  where T  is perpendicular to S  and T  is perpendicular to AB (Fig. 
208). The corresponding drawing is given in Fig. 209. The problem is reduced 
to a successive construction of the projections as and at of the point A, 
and bs and bt of the point B. The oblique line in the system V, H  turns out 
to be perpendicular to the additional plane of projection T  via an inter
mediate stage of parallelism with respect to the additional plane S. Since 
the plane S  is parallel to the line AB, the points A and B are equidistant from 
the plane S9 this distance being equal, for instance, to the line segment a2. 
Taking the axis S/T  perpendicular to asbs (which in space corresponds to 
perpendicularity of the plane T  to the line AB) and laying off the line segment 
a,3 equal to a2, we get both projections, at and bt9 as a single point, i.e. 
just the thing to be obtained if AB is perpendicular to T.

Figure 210 gives an example of constructing the true size of the triangle 
ABC. Here also two additional planes of projection (S and T) are introduced, 
hut following such a scheme: S  is perpendicular to H  and to ABC9 and T is 
perpendicular to S  and parallel to ABC. The final stage of construction is 
reduced to passing the plane T  parallel to ABC (since it was required to 
determine the true size of the triangle ABC); the perpendicularity of the 
additional plane S  to the plane ABC being the intermediate stage. This 
intermediate stage repeats the construction shown above in Fig. 205. In the 
concluding stage of the construction shown in Fig. 210 the axis S/T  is parallel 
to the projection csasbs9 i.e. the plane T  is drawn parallel to the plane ABC 
which leads to the determination of the true size of the triangle represented 
by the projection atbtct .
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Thus, to obtain parallelism of the planes ABC and T  in this example we 
had first to arrange the triangle ABC and the plane S  in mutually perpen
dicular positions. And vice versa, to get perpendicularity {AB to T) in the 
example given in Fig. 209 we had first to obtain mutually parallel positions 
of AB and S.

QUESTIONS TO SECS. 32-33

1. What methods of transformation of drawing are considered in 
Chapter 5 ?

2. What is the difference between these methods?
3. What does the method of replacing projection planes consist in?
4. What position in the system F, H  must occupy the plane of projection 

S  introduced to form the system S9 H  ?
5. What position will the projection plane T  occupy in the system F, H 

when the latter is transformed from F, H  via S9 H  to S9 T1
6. How do we find the true length of a line segment and the true size of 

the angles formed by this line with the planes F  and H  by introducing 
supplementary planes of projection ?

7. How many additional planes should be introduced into the system 
F, H  to determine the true size of a figure whose plane is perpendicular to 
H or to F?
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8. How many planes and in what succession must be introduced into the 
system F, H  to bring a given oblique plane to the position in which it is 
perpendicular to the additional planes of projection?

9. The same question but with respect to obtaining the true size of a figure 
contained in an oblique plane.

Sec. 34. The Method of Revolution Characterized

When revolving about a certain fixed line (called the axis o f revolution) 
each point of the revolved figure displaces in the plane perpendicular to the 
axis of revolution (called the plane o f revolution). A point describes a circle 
whose centre lies at the point of intersection of the axis of revolution and the 
plane in which the point revolves (the centre o f revolution), the radius 
being equal to the distance of the revolved point from the centre (the 
radius of revolution). If a point belonging to a given system lies on the axis 
of revolution, then during rotation of the system this point is considered 
to be fixed.

The axis of revolution may be specified or chosen; in the latter case it is 
advantageous to arrange the axis perpendicular to one of the projection 
planes, since this simplifies relevant constructions.

Indeed, if the axis of revolution is perpendicular, say, to the F  plane, 
then the plane in which the point revolves is parallel to the F  plane. Hence, 
the path described by the point is projected on the F  plane without distor
tion, and on the H  plane into a line segment (Fig. 211).
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Sec. 35. Revolution of a Point, 
a Line Segment and a Plane about 

an Axis Perpendicular to a Projection Plane

Revolution about a Given Axis.
1. Let a point A revolve about an axis perpendicular to the H  plane 

(Fig. 212). Through the point A a plane T  is passed perpendicular to the 
axis of revolution and, consequently, parallel to the H  plane. Revolving in 
the plane T, the point A describes a circle of radius R which is represented 
by the length of the perpendicular dropped from the point A onto the axis. 
The circle described by the point A in space is projected on the H  plane 
without distortion. Since the plane T  is perpendicular to the V plane, the 
projections of the points of the circle on the V plane will be located on Tv,
i.e. on the line perpendicular to the vertical projection of the axis of revolu
tion. In the drawing given in Fig. 212 (right), the circle described by the 
point A when the latter is revolved about the axis, is projected on the H 
plane without distortion. A circle of radius R =  oa is described from point 
o as centre; on the V plane this circle is represented by a line segment equal 
to 2R.

Figure 213 illustrates rotation of a point A about an axis perpendicular to 
the V plane. The circle described by the point A is projected on the V plane 
without distortion. From point o' as centre, a circle of radius R = oa is 
drawn which is represented on the H  plane by a line segment equal to 2R.

From Figures 212 and 213 it is obvious that when rotating a point about 
an axis perpendicular to a projection plane one of the projections o f the rotated 
point displaces in a straight line perpendicular to the projection o f the axis 
o f revolution.

Figure 214 shows how a point A is rotated anticlockwise through an angle 
a about an axis passing through the point O perpendicular to the V plane. 
From point o' as centre an arc of radius o'a’ is described corresponding to 
the angle a and the direction of rotation. Point a[ is the new position of the 
vertical projection of the point A.

2. Now we are going to consider the rotation of a line segment about a 
given axis. The line segment AB (Fig. 215) is turned to the position A\B\, 
Obviously, the problem is reduced to the rotation of points A and B through 
a given angle a in a given direction. The paths along which the vertical pro
jections of these points are displaced are indicated by straight lines drawn 
through a’ and b' perpendicular: to the vertical projection of the axis of 
revolution.

The new position of the horizontal projection of the point A (point a{) is 
obtained by rotating the radius oa through a given angle a. To find the point 
b± (the position of the horizontal projection of the point B after the rotation) 
a circular arc of radius ob is described and in this arc a chord bbi is laid off 
equal to the chord 7-2. This corresponds to the rotation of the point B 
through the same angle a.

Then from the points ai and b\ the line of recall are drawn to intersect
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Fig. 213

the directions of displacement of the vertical projections; as a result, the 
projections a[ and b\ are obtained.

The line segments between the points a[ and b'l9 and between the points 
ai and bi determine the new positions of the vertical and horizontal pro
jections of the line segment after its rotation to the position A\B\.

Let us now consider the triangles abo and a\bio (see Fig. 215). The sides 
bo and ao of the triangle abo are respectively equal (as radii of one and the 
same circle) to the sides b\o and a\o of the triangle aJ)io9 and the angles 
between these sides are also equal. Hence, the triangles are congruent, and 
ab is equal to a\bu i.e. the length of the horizontal projection of a line segment 
revolved about an axis perpendicular to the H plane remains unchanged. 
Obviously, a similar conclusion is true for the vertical projection o f a line 
segment revolved about an axis perpendicular to the V plane.

In the congruent triangles abo and ado\0  (Fig. 215) the altitudes drawn, 
for instance, from point o to ab and aibi will also be equal.
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The conclusions drawn enable us to establish the following method of 
constructing the new projections of a line segment revolved about an axis 
through a given angle (Fig. 216). Through the point o we draw a straight 
line perpendicular to ab, and rotate the point c (the intersection of the per
pendicular with ab) through a given angle. Drawing through the point Ci 
(the new position of the point c) a straight line perpendicular to the radius 
oci, we obtain the direction of the new position of the horizontal projection 
of the line segment. Since the length of the line segments ca and cb remains 
unchanged, we find the new position aibi by laying off from the point ci 
the line segments c&i =  ca and c\b\ =  cb. The location of the new position 
of the vertical projection a[b[ remains unchanged.
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The above method may be used not only for revolving a line segment 
through a given angle, but also for determining the angle through which a 
given segment must be revolved to occupy a certain required position (for 
instance, for arranging it parallel to the V plane).

3. The revolution of a plane about a given axis is reduced to rotating the 
points and straight lines belonging to it.

An example is given in Fig. 217: the triangle ABC defining the plane is 
revolved to occupy the position A 1B 1C1 according to the given angle a and 
direction indicated by an arrow. The construction is similar to that shown 
in Fig. 215 where two points A and B were revolved. But here three points 
(the vertices A> B and C) are revolved, and, hence, the whole figure. The 
triangles abc and aibiCi are congruent by construction: with the axis per
pendicular to the H  plane the horizontal projection remains unchanged. This 
corresponds to that the angle of inclination of the plane ABC to the H 
plane remains unchanged if the axis of revolution is perpendicular to the 
H plane. Obviously, when the figure is revolved about an axis perpendicular 
to the V plane, the angle of inclination of the revolved plane to the V plane 
and the vertical projections remain unchanged.

When revolving a plane represented by its traces, we usually rotate one 
of the traces and a horizontal (vertical) line of the plane. An example is 
given in Fig. 218 where an oblique plane P is revolved through an angle 
oc about an axis perpendicular to the H  plane. On the trace Ph a point is 
taken nearest to the axis of revolution, i.e. a point a {oa is perpendicular to 
Ph) similar to the point c taken in Fig. 216. The point a is then revolved 
through an angle a. Through the point a\ thus obtained we draw a straight 
line perpendicular to oai which is the horizontal trace of the plane in its 
new position.

To find the vertical trace of the plane after its rotation it is sufficient to 
find, in addition to the point Pxi determined on the x-axis, one more point 
belonging to the trace. In the plane P we take a horizontal line « /,« '/ ' which 
intersects the axis of revolution (nf passes through the horizontal projection 
of the axis of revolution). Of course, we might take a horizontal line which 
does not intersect the axis of revolution. Since the horizontal line in its 
new position remains parallel to its horizontal trace, we have to draw through 
o a straight line parallel to Phi thus obtaining the new position of the 
horizontal projection of the horizontal line. The vertical projection will not 
change its direction, and therefore it is easy to find the new vertical trace of 
the horizontal line—point n[. Now we can construct the vertical trace of the 
plane (Pvi).

Revolution About a Chosen Axis. In a number of cases the axis of 
revolution may be chosen. And if the axis of revolution is chosen as passing 
through one of the end-points of a line segment, then the construction will 
become simplified, since the point through which the axis passes will be 
‘fixed’. In this case, to revolve the line segment we have to construct the 
new positions of the projections only of one point (the other end-point of 
the segment).
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Fig. 220

Figure 219 illustrates the case when for revolving the line segment AB 
the axis of revolution is chosen to be perpendicular to the plane H  and pass
ing through the point A . When revolving about such an axis, we can, for 
instance, position the line segment parallel to the V plane. This position is 
just shown in Fig. 219. The horizontal projection of the line segment in its 
new position is perpendicular to the line of recall aa'. Finding the point b[ 
and constructing the line segment a'b[, we get the vertical projection of the 
line segment AB in its new position. The projection a'b[ represents the true 
length of the line segment AB, the angle a'bjb' being equal to the angle 
between the line AB and the H  plane.

If it is required to determine the angle of inclination of an oblique line 
to the V plane, then we have to draw the axis of revolution perpendicular to 
the V plane and to revolve the line so that in its new position it is parallel to 
the H  plane. The relevant construction is left to the reader.

If for revolving a plane represented by its traces we may choose the axis 
of revolution, then it is advisable to arrange it in a projection plane—this 
will simplify the constructions involved. An example is given in Fig. 220. 
Suppose the axis of revolution must be perpendicular to the H  plane. If 
it is taken in the V plane, then on the trace Pv there appears a ‘fixed’ point 
O (at the intersection with the axis of revolution). After the plane is revolved 
the vertical trace must pass through this point. Consequently, on finding 
the position of the horizontal trace (P/q) after the revolution, we have to 
draw the trace Pvi through the points Px\ and o'. The comparison with Fig. 
218 shows that the simplification consists in avoiding a horizontal line. 
It would be necessary if the point Pxl ‘left’ the limits of the drawing; but in 
similar case in Fig. 218 we would have to take two auxiliary lines.

Figure 221 shows how an oblique plane becomes a horizontal projecting 
plane after the revolution and the angle of inclination of the plane P to the 
V plane is thus determined. If we take an axis of revolution perpendicular to 
the H plane, then it is possible to bring the plane P to the position of a verti
cal projecting plane, and thus determine the angle of inclination of the plane 
P  to the H  plane.

Comparing the positions occupied by the plane before and after the
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rotation, we note that the angle formed by the traces Pv and Ph in the draw
ing is changed in general.

If we imagine a circular cone with the vertex at the point O and with the 
base contained in the H  plane in Fig. 220 and in the V plane in Fig. 221, and 
a plane P tangent to the cone, then the revolution of the plane P about the 
axis of revolution coinciding with the axis of the cone represents a kind of 
‘rolling’ the cone by the tangent plane.

QUESTIONS TO SECS. 34-35

1. What does the method of revolution consist in?
2. What is the plane of revolution of a point and how is it positioned 

with respect to the axis of revolution?
3. What is the centre of revolution of a point when the latter is revolved 

about a certain axis?
4. What is the radius of revolution of a point?
In the following questions revolution is meant about an [axis perpen

dicular to a projection plane.
5. How are the projections of a point displaced?
6. What projection of a line segment does not change its length?
7. How do we revolve a plane: (a) not represented by its traces, (b) 

represented by the traces?
8. In what case does the revolution preserve the angle of inclination of a 

straight line with respect to the plane: (a) H, (b) V.
9. The same question with reference to the W plane.
10. Is it possible to determine by revolution the true length of a line seg

ment and the angle of its inclination to the planes V and //?
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11. Is it possible by revolving a plane to determine the angles of its in
clination to the planes V and H I

12. In what advantageous position can we place the axis of revolution 
when rotating (1) a line segment, (2) a plane represented by its traces?

Sec. 36. Applying the Method of Revolution Without 
Indicating in the Drawing the Axes of 

Revolution Perpendicular to the V or H  Plane

In Section 35 we saw that if a line segment or a plane figure is revolved 
about an axis perpendicular to a projection plane then its projection onto 
this plane preserves its shape and size, the position of this projection with 
respect to the axis of projection being the only thing which undergoes a 
change. As far as the other projection is concerned, the one on the plane 
parallel to the axis of revolution, we see that all points belonging to this 
projection (except for the projections of points situated on the axis of 
revolution) displace in straight lines parallel to the axis of projection, and the 
projection in general changes its shape and size. Taking advantage of these 
properties, we can apply the method of revolution without representing the 
axis of revolution and without specifying the length of the radius of revolu
tion; it is sufficient only to displace one of the projections of thejfigure under 
consideration into the required position without changing its shape and 
size, and then to construct the other projection as described above.

For instance, it is required to rotate the segment AB of an oblique line 
(Fig. 222) so as to position it perpendicular to the H  plane. We begin with 
the revolution about the axis perpendicular to the H  plane until the position 
parallel to the V plane is achieved without indicating this axis in the drawing. 
Since this revolution leaves the horizontal projection of the fine segment 
unchanged, we take the projection tfifci equal to ab and position it parallel 
to the x-axis which corresponds to parallelism of the line segment to the V 
plane.

On finding the corresponding vertical projection of the line segment 
(a{&i) we carry out a second revolution, this time about an axis perpendicular 
to the V plane until the required position is obtained in which AB is per
pendicular to the H  plane. This axis is not represented in the drawing either. 
We place the projection a'2b2 equal to a[b[ perpendicular to the x-axis. The 
horizontal projection of the segment is represented by a point designated 
by two letters—a2b2.

Thus, the performed operations correspond to the revolutions about 
axes perpendicular to projection planes, but these axes are not shown in the 
drawing. Of course, they can be found. For instance, if we draw two straight 
lines—one through the points a and a\9 the other through b and bi—and 
erect perpendiculars at the mid-points of the line segments aa\ and bbi9 then 
the obtained point of intersection of these perpendiculars will be the horizon
tal projection of the axis of revolution perpendicular to the H  plane. But, 
as we see, there is no need to indicate them.
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Fig. 222

Figure 223 demonstrates two stages of revolving the triangle ABC con
tained in an oblique plane for determining the true size of this triangle. 
Indeed, in its latter position it is parallel to the H  plane and, consequently, 
the projection a2b2c2 represents the true size of the triangle. But to bring 
it to such a position we first have to) revolve the oblique plane containing 
the triangle so as to arrange it perpendicular to the V plane. To this end we 
have to take a horizontal line in the triangle ABC and revolve it until it is 
perpendicular to the V plane; then the triangle containing this horizontal 
line will also become perpendicular to the K plane. Since the construction 
is carried out without indicating the axes of revolution, we arrange the pro-
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Fig. 224

jection a\b\cx arbitrarily, but so that the horizontal line is perpendicular to 
the V plane; for this purpose we direct the projection of the horizontal line 
a\l\ parallel, say, to the line of recall a!a (the drawing contains no axis of 
projection). This revolution is understood as being accomplished about an 
axis perpendicular to the H  plane; therefore the horizontal projection of the 
triangle preserves its shape and size (flifciCi =  abc)9 changing only its posi
tion. During such a revolution the points A , B and C displace in planes 
parallel to the H  plane, the projections b'l9 a[ and c{ being situated on the 
horizontal lines of recall d a X9 b'b[9 and c'cx.

The second revolution which brings the triangle to a position parallel to 
the H  plane is meant as being accomplished about an axis perpendicular to 
the V plane. During this revolution the vertical projection retains its shape 
and size, the points A 1, B\9 and C i obtained during the second stage of
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revolution now displace in planes parallel to the V plane; and the projections 
a2, b2, and c2 are found on the horizontal lines o f recall with the points au 
hi)  C \.

The projection a2b2c2 represents the true shape and the size of the triangle 
ABC.

This method rather simplifies the constructions involved and avoids 
superimposed projections, but the drawing occupies a greater area*.

One more example of revolution without showing the axes is given in 
Figs. 224 and 225. Here a cube is successively revolved until it is brought to a 
position in which the diagonal AB is arranged perpendicular to the V plane.

First the cube is revolved about an axis perpendicular to the H  plane 
until it is positioned so that the diagonal AB is placed in a profile plane (Fig. 
224).

The cube is then brought to a third position in which the diagonal AB 
turns out to be perpendicular to the V plane (Fig. 225). This is obtained by 
revolving the cube about an axis perpendicular to the W  plane**.

Sec. 37. Revolution of a Point, a Line Segment, 
and a Plane about an Axis Parallel to 

a Projection Plane, and about a Trace of a Plane

Revolution of a Plane Figure about Its Horizontal Line. To determine the 
true shape and dimensions of a plane figure, the latter may be revolved 
about a horizontal line belonging to it with the purpose to arrange the figure 
parallel to the H  plane.

Let us first consider the revolution of a point (Fig. 226). The point B 
revolves about a horizontally arranged axis Ori describing a circular arc 
contained in the plane S. This plane is perpendicular to the axis of revolution 
and, hence, is a horizontal projecting plane. Therefore, the horizontal pro- 
jection of the circle described by the point B must lie on Sh.

If the radius OB occupies a position parallel to the H  plane, then the 
projection obi will turn out to be equal to OBi, i.e. equal to the true length 
of the radius OB.

Now we are going to examine Fig. 227, which illustrates the revolution 
of a triangle ABC about a horizontal line AlD taken as the axis of revolution. 
The point A located on the axis of revolution will become fixed. Conse
quently, to represent the horizontal projection of the triangle after the revo
lution we have to find the positions of the projections of two other of its 
vertices. Dropping a perpendicular from point b onto ad, we find the hori
zontal projection of the centre of revolution, i.e. the point o, and the hori
zontal projection of the radius of revolution of the point B (the line segment 
ob), and then determine the vertical projection of the centre of revolution

♦This method is sometimes called ‘the method of plane-parallel displacement’. 
♦♦The projection of the cube thus obtained on the V plane (Fig. 225) coincides with 

its representation in orthogonal isometry.



128 DESCRIPTIVE GEOMETRY

(the point o’ and the vertical projection of the radius of revolution of the 
point B—the line segment o'b'. Now we have to determine the true length 
of the radius of revolution of the point B. This is done with the aid of the 
method described in Sec. 13, i.e. by constructing a right triangle. Using the 
line segments ob and bB = b’V as the legs, we construct a right triangle obB; 
its hypotenuse is equal to the radius of revolution of the point B.

Now we can find the position of the point &i, and then of the point c\. 
Here we may not determine the radius of revolution of the point C, but find 
the position of the point Ci as the intersection of two straight lines, one of 
which is a perpendicular drawn from the point c to the line ad, the other 
passing through the found point b \ and point d  (the horizontal projection 
of the point D belonging to the side BC and situated on the axis of revolu
tion).

The projection ab\C\ represents the true size of the triangle ABC, since 
after the revolution the plane containing the triangle is parallel to the H 
plane. As far as the vertical projection of the triangle is concerned, it coin
cides with the vertical projection of the horizontal line, i.e. represents a straight 
line.

Figure 227 represents the construction for the case when a horizontal 
line is drawn outside the projections of a triangle. This enables us to avoid 
superimposed projections, but the drawing occupies a greater area.

If it is required to revolve a plane figure to a position parallel to the V 
plane, then a vertical line should be chosen for the axis of revolution.

We would like to draw reader’s attention to the fact that in the construc
tion shown in Fig. 226 we do not see the projection o'b' of the radius of 
revolution of the point B. Obviously, a proper understanding of the construc
tion in question makes it possible to get rid of this projection. An example 
is given in Fig. 228 showing how a plane specified by a point K  and a line AB 
is revolved to a position parallel to the H  plane. The plane is revolved 
about a horizontal line KD which is drawn through the point K  which is



CH. 5. METHOD OF REPLACING PROJECTION PLANES 129

thus becomes ‘fixed’. What is left is to rotate the line AB about KD, or 
strictly speaking, only the point A , since the point D on the line AB is 
also ‘fixed’: it belongs to the axis of revolution. Drawing ao perpendicular 
to kd, i.e. marking the position of the horizontal trace of the horizontal 
projecting plane in which the point A revolves, we obtain the horizontal 
projection of the centre of revolution of the point A (point o) and the hori
zontal projection of the radius of revolution of the point A (line segment oa). 
We now find the true length of the radius of revolution Ra as the hypotenuse 
of the triangle oaA in which the leg a A  is equal to a'c'. On finding the point a\ 
(the horizontal projection of the point A after the revolution), we draw 
aibi, i.e. the horizontal projection of the line AB after the revolution, using 
the point d. Thus, we have done without the vertical projections of the centre 
and radius of revolution.

Revolution of a Plane about Its Trace. This is a special case of the method 
of revolution of a plane when one of its traces serves as the axis of revolution. 
As a result of such revolution, the given plane is brought into coincidence 
with one of the projection planes. In the latter plane we get a true size 
representation of the line segments and figures contained in the plane brought 
to coincidence. This special case of the method of revolution is called the 
coincidence method.

Obviously, this construction is analogous to the revolution of a plane 
about its horizontal or vertical line until it is parallel to the corresponding 
plane of projection: the horizontal trace of the plane may be considered as 
its ‘zero’ horizontal line, and the vertical trace as its ‘zero’ vertical line.
9-23012



130 DESCRIPTIVE GEOMETRY

Figure 229 shows constructions that result from coincidence of an oblique 
plane P with the H  plane, the revolution being carried out about Ph in the 
direction from the V plane toward the viewer.

Two intersecting lines contained in the plane P will turn out to be 
coincident with the H  plane: the trace Ph and the straight line P ^  which 
represents the trace Pv coincident with the H  plane.

The trace Ph, as the axis of revolution, does not change its position; 
the point of intersection of the traces also preserves its position, and there
fore, if it were required to indicate the coincident position of the trace PV9 
it would be sufficient to find one more point of this trace (besides the point Px) 
in the position coincident with the H plane. We are going to find the coinci
dent position of a point N  lying on the trace Pv. This point will describe an 
arc of a circle in the Q plane perpendicular to the axis of revolution; the 
centre of this arc lies at the point M 0 of intersection of the plane Q with the 
trace Ph- Describing from the point Mo an arc of radius M 0N in the plane Q, 
we get a point No on the H  plane as the point of intersection of this arc 
with Qh- Drawing a straight line through Px and No, we obtain Pvo- Since 
the line segment PXN  preserves its length during the revolution of the plane, 
obviously, we may obtain No as the intersection of Qh with the arc of radius 
PXN  described in the plane H.

In the drawing (Fig. 230) an arbitrary point N  is taken on the trace Pv 
(it coincides with its projection ri) and through its projection n a straight 
line nMo is drawn perpendicular to the axis of revolution, i.e. to the trace iV 
On this line the point N  must lie after it is brought in coincidence with the 
H  plane at a distance from the point Mo equal to the radius of revolution of 
the point N , or at a distance Pxri from the point Px. The length of the radius 
of revolution can be determined as the hypotenuse of a right-angled triangle 
with the legs Mon and nN (nN =  nri). Describing from the point Mo an 
arc of radius M 0N, or from the point Px an arc of radius Pxn \ we get on the
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line nM0 a point No which is the coincident position of the point N  with the 
H plane. Drawing a straight line through the points Px and No, we obtain 
the coincident position of the trace Pv (the line Pv0).

Let us return to Fig. 229 and consider the coincidence of the point C 
with the H  plane.

The coincident position of the point C with the H  plane is found in 
Fig. 231 (left). Through the point c a straight line cM0 is drawn perpendi
cular to Ph. The radius of revolution M 0C is determined as the hypotenuse 
of a right triangle whose one leg is Moc, its other leg being cC =  c'l. From 
the point Mo as centre we describe an arc of radius AfoC to intersect the 
extended line cM0 at point C0. The latter is just the coincident position of the 
point C in the H  plane.

This construction may also be accomplished in the way shown in Fig. 231 
(right). We first determine the position of the point C in the plane P by means 
of a vertical line and draw a straight line cMo perpendicular to Ph, and then 
intersect this line with an arc described from the point / as centre whose 
radius is equal to the line segment c'/', i.e. to the true length of the line seg
ment CL in the plane P. On coincidence this length remains unchanged: 
c0l =  CL.

If a line segment is given in a plane, then finding the coincident positions 
of the end-points of this segment, we get the true length o f the line seg
ment.

As is known, any horizontal line taken in the plane P is parallel to Ph, 
and any vertical line is parallel to Pv. Therefore, if there is a need to find the
9*
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coincident position of a horizontal or a vertical line, then it is sufficient to 
find the coincident position of its trace and to draw through it a straight line 
parallel respectively to Ph or Pv0 (if the plane P is brought in coincidence with 
the H  plane).

We shall take an advantage of this method for carrying out an inverse 
construction. Let there be given a point Co which is the coincident position 
of the point C with the H  plane; it is required to find the projections of the 
point C if it must lie in the plane P specified by its traces (see also Fig. 229).

When the point C0 is ‘elevated into space’, its horizontal projection 
(point c) displaces in a straight line C0n (Fig. 232) perpendicular to Ph, i.e. 
in the trace Qh of the plane of revolution Q. The point C in space must 
lie on the line of intersection of the plane P with the plane of revolution 
(see Fig. 229) at a distance M 0C0 from the point M 0.

Let us construct on the H plane a right triangle MtfiN in which the side nN 
is equal to n'n (Fig. 232), and which is, consequently, congruent to the tri
angle Mnri in space. _

Laying off on the hypotenuse M qN  a line segment MoCo (the radius of 
revolution), we get the point C. Drawing through it a straight line perpendi
cular to M 0n, we obtain the required position of the horizontal projection 
of the point C (point c).

The point c' must lie on the perpendicular drawn from the point c to the 
x-axis at a distance c'l equal to cC.

If it is required to ‘elevate into space’ a line segment, then in the general 
case we have to elevate two of its points in the above-mentioned way, or 
using a so-called ‘fixed’ point. This is shown in Fig. 233 where it was required 
to ‘elevate into space’ (that is on the plane P) a line segment AB specified 
by its coincident with the H  plane position (AqBo). The construction is 
somewhat complicated by that the point of intersection of the traces Pv and 
Ph is considered to be inaccessible.
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An auxiliary plane Q is constructed parallel to P and the trace Qi is 
found coincident with the H  plane. Since Q is parallel to P9 then Qw deter
mines the direction of the vertical lines of both Q and P in the position 
coincident with the H  plane. Therefore, drawing Bon parallel to Qvq, we get 
the vertical line of the plane P on which point B is located in space; as is 
obvious, this line is obtained in the position coincident with the H  plane. 
We now construct the projections of this vertical line and find on them the 
projections b and b If we extend the line AqB0 to intersect the trace Ph 
at point m, then the horizontal projection ab will be found on the line passing 
through this ‘fixed’ point m and the constructed projection b. The projection 
a'b' is obtained on the line passing through the points m' and b'.

We have considered the coincidence of a plane with the horizontal plane 
of projection, revolving the plane about the horizontal trace. If it is required 
to bring it in coincidence with the vertical plane of projection, we have to 
revolve the plane about its vertical trace.

If a horizontal projecting plane is revolved about its vertical trace until 
it is coincident with the V plane, then after the revolution the horizontal 
trace of the plane will be situated on the axis of projection. Likewise, if a 
vertical projecting plane is revolved about its horizontal trace until it is 
brought into coincidence with the H  plane, then the vertical trace of the 
plane will be found on the axis of projection.

Figure 234 represents a plane with an obtuse angle between the traces Qv 
and Qh brought into coincidence with the H plane when revolved ‘towards 
I he viewer’ and in the reverse direction.
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QUESTIONS TO SECS. 36-37

1. Is it possible to show in the drawing the revolution of a straight line 
about an axis perpendicular to H  or V without representing the axis itself? 
What is this method based on?

2. What term is sometimes used for the method of revolution without 
indicating the axis?

3. How is the plane of revolution of a point arranged if the axis of revo
lution of the latter is only parallel to H  or V, but is perpendicular neither 
to Hj nor to V? Why in this case is it necessary to determine the true length 
of the radius of revolution?

4. What is the test for verifying whether a plane specified by a horizontal 
line and a point has reached the horizontal position when revolved about 
this horizontal line, and where is the vertical projection of the point obtained 
after the revolution?

5. What is understood under term ‘the coincidence method’?
6. What is implied by ‘elevation into space’?

Sec. 38. Examples of Solving Problems Using the 
Method of Replacing Projection Planes and the Method 

of Revolution

1. Construct the projections of the point of intersection of two profile 
lines contained in a common profile plane.

The solution is given in Fig. 204. Here the method of replacing projection 
planes is applied. To get the projection k ' lay off the line segment k'2 equal 
to the found segment kql.

2. Construct an additional plane of projection so that an oblique line 
turns out to be perpendicular to this plane.

The solution is given in Fig. 209 where two additional planes are succes-
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sively introduced. The line segment AB is perpendicular to the second 
additional plane of projection T.

3. Revolve an oblique line to arrange it perpendicular to the H  plane.
The solution is given in Fig. 222. Two successive revolutions are applied.

After the second revolution the line segment AB becomes perpendicular to 
the H  plane.

4. Determine the true length of a segment of an oblique line and the true 
size of the angles of its inclination to the projection planes V and H.

Figure 202 shows the solution by the method of replacing projection 
planes. An additional plane T  is introduced which is perpendicular to V and 
parallel to the given segment CD, thus determining the length of the line 
segment and the angle with the V plane.

Figure 219 shows the solution by the method of revolution. The line 
segment AB is revolved about the axis drawn through the point A to occupy 
the position parallel to the V plane, thus determining the length of the line 
segment and the angle with the H plane.

5. Determine the distance from a point to a straight line.
Let us examine Fig. 228. It shows the revolution of the plane defined by 

a point K  and a straight line AB about the horizontal line KD of this plane. 
The revolution brings the plane to a position parallel to the H  plane. 
Now we are able to draw a perpendicular kl (Fig. 235): the line segment kl 
represents the required distance from the point K to the line AB.

Figure 236 shows the solution of the same problem by revolving the 
system consisting of a point K  and a straight line AB first about an axis 
perpendicular to the H  plane, and then about one perpendicular to the V
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plane. (The axes are not shown in the drawing—see Sec. 36). Since during 
the first revolution the horizontal projection of the system changes only its 
position, but not the configuration and size, then drawing the perpendicu
lar k ly we construct the horizontal projection a\bx in the required position. 
Using this projection, we find the vertical projection a[lix2xkx. During the 
second revolution we must preserve the configuration and size of this pro
jection. We ‘attach’ the point k[ to a[bfx by means of a perpendicular k[2[ 
and construct the projection a^b^k^. Using this projection, we obtain the 
projection k2 of the po in ts and the point designated by two letters («a2 and b2) 
which is the projection of the line segment AB. The required distance from 
the point K to the line AB is represented by the segment k 2a2 (k2b2).

6. Determine the distance from a point to a plane.
Figure 201 shows the solution for the case of a horizontal projecting 

plane. The solution is reduced to drawing the perpendicular ak.
Figure 237 gives the solution for an oblique plane specified by a triangle 

(left), and by the traces (right). Here the method of replacing projection 
planes is applied: we introduce an additional plane S  perpendicular both 
to the H  plane and to the given plane which, finally, turns out to be perpen
dicular to the plane S  (see Figs. 205 and 206 and the corresponding expla
nations). The required distance is determined by the perpendicular drawn 
from the point ks to the projection bscs (Fig. 237, left) and to the trace Ps 
(Fig. 237, right).

7. Determine the distance between two parallel planes.
The solution of this problem can be reduced to determining the distance 

from a point taken in one of the planes to the other plane or to introducing 
into the system F, H  an additional plane of projections perpendicular to the 
given planes, as it is done in Fig. 237.

8. Determine the distance between two parallel lines.
The solution of this problem may be reduced to finding the distance from 

a point taken on one of the lines to the other line (see Figs. 235 and 236).
Figure 238 shows a construction in which a plane defined by parallel 

lines is revolved about one of its horizontal (or vertical) lines to a position 
in which the plane, and consequently, the given lines, are parallel to a pro
jection plane.

The revolution is carried out about a horizontal line KM. It is sufficient 
to find the new position of, say, the point A (point ax on the horizontal plane): 
the line a\k and the line parallel to it and drawn through the point m repre
sent the horizontal projections of the given parallel lines when the plane 
defined by them is arranged parallel to H.

Figure 239 shows how the same problem is solved by the method of 
replacing projection planes. First both lines are projected on the plane S  
which is parallel to them (the plane S  is passed through one of the lines, AB). 
Then the lines are projected on the plane T  which is perpendicular to them. 
On this plane the projections of the lines are represented by points. The line 
segment atc, (or btdt) determines the required distance between the given 
lines.
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Fig. 238 Fig. 239
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Shown in the same figure are the projections of the line segment deter- • 
mining the distance between the given lines. The projection on the plane S  is 
drawn through the point bs (some other point on asbs might be taken as well) 
parallel to the axis S/T, since in the system S, T  the projection on the plane T  
represents the true length of the distance between AB and CD. The further 
reasoning is clear from the drawing. The projection on the plane T  must be 
longer than each of the projections b ^s, be, and b'ef.

9. Determine the shortest distance between the skew lines and draw the 
projections of a perpendicular common to them.

We would remind the reader that the shortest distance between two skew 
lines is at the same time the distance between the parallel planes containing 
these lines.

Figure 240 shows a common perpendicular to the skew lines AB and CD.
If parallel planes P and Q are passed through AB and CD, and then 

through one of them, say through AB, a plane S  perpendicular to P and Q is 
passed, and the line of intersection of the planes S  and Q is found (this line 
MN  is parallel to AB), then the required perpendicular to the lines AB and 
CD will pass through the point E  of intersection of the lines CD and MN.

In the drawing shown in Fig. 241 one of the skew lines {AB) is projected 
into a point on an additional plane of projection (T). The constructions are 
to be carried out in the following succession:
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Fig. 243

(a) From the system F, H  pass over to a new system S , H  where S  is 
perpendicular to H  and parallel to AB.

(b) From the system S9 H  pass over to a new system S, T  in which T  is 
perpendicular to S  and AB.

(c) Obtaining on the plane T  the projection of the line AB in the form of 
a point and the projection of the second line (<ctdt) and drawing a perpendi
cular from at (bt) to ctdt , find the required distance between the given skew 
lines AB and CD.

Furthermore, the figure shows how the projections of a common per
pendicular to AB and CD are constructed. The projection esf s is drawn 
parallel to the axis S/T.

10. Construct the projections of a segment of an oblique line forming an 
angle a with the H  plane and an angle /? with the F  plane. Such construction 
was shown in Sec. 13 (Figs. 73 and 74) but without using the methods set 
forth in Chapter 5. Now we are going to solve this problem applying the 
method of revolution.

Suppose (Fig. 242) the line must pass through the point A at an angle a 
to the H  plane and at an angle /? to the F  plane. As is known (see Sec. 13), 
for an oblique line the sum of a and /? must be less than 90°.

Through the point A two straight lines are drawn: one parallel to the F 
plane at an angle a to H> the other parallel to the H  plane at an angle fi to F. 
We then lay off equal line segments a'b[ =  ab2 on both lines. Let us now 
revolve the segment AB\ about an axis perpendicular to H , and the segment
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AB2 about an axis perpendicular to V, both these axes passing through the 
point A (thus enabling us to keep this point in its given position). At a certain 
moment the segments will coincide yielding the segment AB (see Fig. 242) 
which represents the required line. Four such lines can be drawn through the 
point A.

11. Construct an oblique plane passing through a point A at given angles 
to H  and V.

In Section 29 we established the relationship between the angles formed 
by an oblique plane with the projection planes H  and V, and the angles 
formed by a perpendicular to this plane with the same projection planes. 
According to these relationships, to construct a plane at an angle ai to H 
and /?i to F, we first have to construct a straight line at an angle a =  90°—ai 
to H  and at an angle fi =  90°— to F (see Problem 10), and then through 
the given point A to pass a plane perpendicular to the constructed line*.

12. Revolve an oblique plane specified by the triangle ABC (Fig. 243) 
about a given vertical axis so that this plane passes through a given point K. 
If the plane passes through the point K, then the latter will turn out to be 
contained in the plane on one of its horizontal lines. We can at once indicate 
the horizontal line which, on revolving the plane, must pass through the 
point K : to this end it is sufficient to draw the vertical projection of the 
horizontal line through the point k'. On constructing the horizontal pro
jection of the horizontal line (mri) and determining the radius of revolution 
(<od), we draw a circle with respect to which the horizontal projection of the 
horizontal line will be tangent at any position when the plane is revolved 
about the given axis. If now a line is drawn from the point k tangent to this 
circle (kd\\ we may take it for the horizontal projection of the horizontal 
line, on which the point K  must be located when the plane will pass through it.

Having constructed the horizontal projection of the horizontal line after 
the revolution (mi«i), we construct the horizontal projection of the triangle 
which changes only its position but remains unchanged by configuration 
and size (ciibiCi is congruent to abc). Using the projection aibici, we find the 
projection a^biC .̂

Here we confine ourselves to one solution. A second solution is obtained 
by drawing a second tangent line from the point k .

The present problem may be modified in the following way: revolve an 
oblique plane about a vertical axis so that the given point turns out to be 
contained in this plane.

This problem differs from the preceding one only by that we ourselves 
have to choose the axis of revolution. May it be chosen arbitrarily?

It turns out that not any of the straight lines perpendicular to the H  plane 
may be taken as an axis suitable for solving this problem.

It follows from Fig. 243 that the horizontal projection of the axis of 
revolution must be arranged so that relative to the horizontal projections of

♦Obviously, on constructing the line in the way considering in Sec. 13, we may pass 
to it a perpendicular plane which will be the required one.
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ar

the point K and the horizontal line MN  the circle with the centre o touching 
the line mn does not contain inside itself the point fc, since from the latter 
point we have to draw a tangent line to this circle.

Hence, at all events the distance of the required point o from the point k 
must be not less than the distance of the same point o from the line mn. If we 
take a point o such that the distances are equal to each other (for instance, 
at points o± or o2 in Fig. 244), then it is possible to place the axis of revolution 
at such a point.

Where in the drawing will lie all the points equidistant from the point k 
and from the line mnl As is known, they are located on a parabola whose 
focus is at the point k  and mn serves as its directrix. The points situated 
inside this parabola are nearer to the focus than to the directrix and are 
unfit for the horizontal projection of the axis of revolution; the points lying 
on the curve itself, or outside it may be chosen for this purpose.

13. Through a point contained in some plane draw in this plane a straight 
line at a given angle a to the H  plane.

Suppose the plane (designated as P) is specified by two intersecting lines 
(Fig. 245, left) and we have to draw the required line through the point A at 
which the lines intersect.

First we find the horizontal trace of the plane P. To this end we draw 
the x-axis and find the horizontal traces of both lines defining the plane P. 
The trace Ph passes through the determined traces. If the required line AB 
was parallel to the V plane, then the angle between the projection a'b' 
and the axis of projection would be equal to the angle between the line and 
the H  plane. Therefore we have to draw through a' (Fig. 245, right) a straight 
line at a given angle a to the axis of projection.

The point b' may be taken on this line arbitrarily; for the sake of simpli
city it is taken on the x-axis. Then we construct the horizontal projection ab 
corresponding to the obtained line segment a'b’. The projection ab must 
be parallel to the axis of projection, since the line is positioned parallel to the 
V plane.
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Fig. 246

The line (a'b', ab) thus constructed satisfies one condition, namely, it is 
drawn at a given angle a to the H  plane, but it dissatisfies the other condition: 
it is not contained in the given plane. To place the line AB in the plane P, 
preserving at the same time the angle a, it is necessary to resolve it about an 
axis perpendicular to the H  plane. Since the point A lies in the plane P, 
we have to take the axis of revolution passing through the point A (Fig. 246). 
During this revolution the point B will move in the plane H , and at the 
moment AB enters the plane P the point B will be on Ph of this plane. 
Therefore, revolving the line ab about the point o (a) we ‘bring’ the point b 
on the trace Ph and, using the new found position of the horizontal projec
tion, we determine the new position of the projection on the V plane.

As is seen from Fig. 246, the problem has two answers, and its solution 
is possible if the given angle a does not exceed the angle of inclination of the 
plane P itself to the H  plane. If these angles are congruent, then we obtain 
only one answer.

14. Find the true size of a plane angle.
The solution of this problem can be seen in Figs. 203 and 210 where the 

constructions are accomplished by the method of replacing projection planes 
(the triangle is projected on the additional plane which is parallel to it and 
its angles are thus determined). In Figs. 223 and 227 the true size of a plane 
angle is determined by the method of revolution, while in Figs. 230 and 234 
the true size of an angle between the traces of a plane in the first quadrant is 
found by bringing the plane into coincidence with the corresponding plane 
of projection.

15. Bisect a plane angle. The construction of the bisector of an angle was 
dealt with in Sec. 15 where we considered the cases of specifying an angle 
where the constructing of the bisector of an angle of a projection correspond-
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ed to bisecting the angle in space. Here the general case is considered. The 
solution is given in Fig. 247.

The plane defined by the sides of the given angle should be positioned 
parallel to one of the projection planes. Then the angle will be projected on 
this plane without distortion and can be bisected. In Figure 247 the plane 
containing the angle is revolved to a position parallel to the H  plane with the 
aid of a horizontal line AC which is constructed in the drawing. The revo
lution of the triangle ABC about the horizontal line AC is reduced to re
volving one of its vertices, namely, the point B. The centre of revolution is 
obtained at the point O (the projections o' and o); the true length of the 
radius of revolution RB is determined as a result of constructing a right- 
angled triangle obB in which the leg ob represents the horizontal projection 
of the radius of revolution, and the leg bB is equal to the line segment b’l.

The point hi is then joined to the points a and c which are the horizontal 
projections of the points located on the axis of revolution and belonging to 
the sides of the angle. The new horizontal projection, i.e. the angle abic equal 
to the given angle ABC is now bisected to obtain the point d on the horizontal 
projection of the horizontal line and then its corresponding projection d' 
on the line a'c'. The points d and d' represent the projections of a point 
situated on the axis of revolution AC and which is thus a ‘fixed’ one. The 
lines b'd' and bd are the projections of the required bisector.

16. Find the true size of the angle between a straight line and a plane.
Figures 202 and 219 show how the true size of an angle between an 

oblique line and a plane of projection is determined. Let us now consider 
the solution for the case of an oblique plane.
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If it is required to determine only the magnitude of an angle between a 
straight line and a plane, then there is no need to construct the projections of 
this angle*.

Indeed, the magnitude of the angle between the line AB and the plane P 
{Fig. 248) can be determined by constructing the angle /3 and finding its 
magnitude: the required angle a = 90°—/?. In this event the solution of the 
problem is considerably simplified, since all the constructions aimed at 
finding the points D and ap are avoided.

The construction is given in Fig. 249. Drawing from the point A of the 
line AB a perpendicular to the plane P, we construct the projections of the 
angle which is a complementary one to the required angle between the line 
AB and the plane P. We then draw the horizontal line CB and, revolving the 
plane defined by the angle CAB about it, bring this plane to a position in 
which it is parallel to the H  plane. The new horizontal projection of the angle 
ca\b is congruent to the angle CAB. Finally, we have to construct the angle 
complementary to the angle caib (the angle a in Fig. 249). It is equal to the 
required angle between the line AB and the plane.

If a plane is specified not by traces, but, for instance, by a triangle, then 
to draw a perpendicular to it we have to construct a horizontal or a vertical 
line in the triangle (see Sec. 29).

17. Determine the true size of an angle between two planes.
Figure 250 shows the solution without constructing the projections of the 

plane angle which measures the dihedral angle formed by the planes P  and 
<2**. This way of solution is especially convenient when the planes are speci
fied by their traces.

If perpendiculars are drawn from some point to the faces of the dihedral, 
angle, then the required plane angle will be equal to the difference between 
the angle of 180° and the angle formed by these perpendiculars. To determine 
the angle between the planes P  and Q the following constructions are carried 
out in Fig. 250:

(a) from a certain point K  there drawn two perpendiculars: one to the 
plane P, the other to the plane Q ;

(b) revolving about a horizontal line, the angle formed by the perpendi
culars is arranged parallel to the H plane.

The required angle between the planes P  and Q is equal to the found angle 
ft or (if (} is obtuse) to the difference between 180° and the found angle.

Figure 251 represents the solution obtained by applying the method of 
replacing projection planes. Here we determine the magnitude of the dihedral 
angle formed by the triangular faces ABC and ABD9 AB serving as the edge. 
If AB turns out to be perpendicular to an additional plane of projection, 
then both faces will be projected on this plane into line segments, the angle

♦For constructing the projections of an angle between a straight line and a plane see 
Sec. 31.

♦♦For constructing the projections o f the plane angle of a dihedral angle see Sec. 31.
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between which is equal to the plane angle of the given dihedral angle 
(Fig. 252).

The construction in Fig. 251 is accomplished according to the following 
scheme: from the system V, H  to the system S , H in which S  is perpendicular 
to H and parallel to AB, and then to the system S , T  where T  is perpendicular 
to S  and AB. Shown on the plane S  are only the projections of the points 
A, B, C, and D\ the faces ABC and ABD are not outlined.

Determining the true size of the angles between an oblique plane and the 
projection planes H  and V by the method of replacing planes of projection 
was shown in Figs. 205, 206, and 207. Application of the method of revo
lution is illustrated in Fig. 221 (the angle with the V plane).

18. Determine the true size of a triangles.
The solution by the method of replacing projection planes can be found 

in Figs. 203 and 210, the same by the method of revolution in Figs. 223 
and 227.

19. Revolve a point A about the axis MN  through an angle a clockwise 
when viewed from M  to N  (Fig. 253).

The construction is carried out by the method of replacing projection 
planes. The plane in which the point A is revolved and the plane of projection
10-23012
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Cf

T  are brought into mutually parallel positions by successively forming new 
systems of projection planes in the following succession: from the system Vy 
H  to the system S , H  where S  is perpendicular to H  and parallel to MN , 
and finally to the system S , T  in which T  is perpendicular to S  and MN. 
Accordingly, the revolution of the point A is represented as the revolution 
of the projection at about the centre mt (nt) through a given angle clockwise 
(since, by hypothesis, to determine the direction of revolution we must view 
from the point M  towards the point N). We then obtain the projection au 
on the line drawn through as perpendicular to msnS9 and then the projections
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ax and a[ which corresponds to the displacement of the point A to the posi
tion A\.

20. Construct the projections of a circle of a given diameter contained 
in an oblique plane.

The solution is given in Fig. 254, where the method of revolution is 
applied.

Let the plane (designated P) containing the circle be specified by a 
horizontal line with the projections c'h! and ch, and a vertical line with the 
projections c '/ ' and cf. The centre of the circle is located at the point C.

In the first position (Fig. 254, left), taking the x-axis as given, and finding 
the horizontal trace of the vertical line CF (point M \  we draw the trace Ph 
parallel to the projection ch of the horizontal line. We then find the coinci
dent position of the centre C (point C0) on the H plane and construct in 
this plane a circle of the given radius with this point as centre.

The required projections of the circle are ellipses. Figure 254 shows how 
the axes of these ellipses are constructed for each projection of the circle.

The major axis of the ellipse which is the horizontal projection of the 
circle lies on the horizontal projection of the horizontal line, and c3 = c4 = 
= the radius of the circle (see Fig. 254, middle). The minor axis is obtained 
with the aid of the diameter 3o40 which is parallel to the trace Ph and of the 
diameter i 020 perpendicular to this trace. Point 2 is obtained with the aid 
of the line JoAa, while point 1 on the same projection can be constructed on 
the basis of that c2 = cl.

The major axis 7,8' of the vertical projection of the circle (Fig. 254, 
right) is found on the vertical projection of the vertical line. Line segments 
c'7' and c'8' equal to the radius of the circle are laid off from the point c'. 
To the axis 7'8' there corresponds the diameter 7q80 of the circle located on 
the vertical line MF brought into coincidence with the H  plane.
10*
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k'

The minor axis 5'6' on the vertical projection is drawn perpendicular 
to 7'8r. Point 5' is constructed with the aid of point 50 of the diameter 50tfo 
of the circle drawn perpendicular to the diameter 708o extended to intersect 
the trace Ph at point k%. On the horizontal projection of the auxiliary line 
cks we find the projection 5 and then construct 5'. Laying off a line segment 
c'6' equal to the segment c'5', we get the projection of the minor axis 
(5'6').

With the axes thus obtained for both ellipses, we may pass over to con
structing the ellipses themselves by its points. We can get these points in the 
way shown in Fig. 254 (middle) for the point A , the projections a and a' 
being constructed analogously to the points 5 and 5'.

21. Construct the vertical projection of an angle whose true size is equal 
to its horizontal projection.

In Section 15 it was established that the projections of an acute (or obtuse) 
angle contained in an oblique plane may be congruent to the angle projected.

Suppose that the angle akb is the horizontal projection of some angle a 
(Fig. 255). We draw the horizontal trace of the plane containing the angle 
under consideration (the line ab) and revolve the point K  about it until it is 
coincident with the plane H. If a circle is drawn through the points a, ft, 
and k , then any angle (including the angle aK0b) inscribed in this circle and 
subtended by the arc acb will be equal to a. Obviously, point K0 is the point K 
(the vertex of the angle AKB) brought into coincidence with the H  plane. 
It is obtained as the point of intersection of the arc drawn through the points 
a, ft, and k with the trace Sh of the plane of revolution of the point K, the 
line segment oK0 being its radius of revolution. Erecting a perpendicular 
to ok at point k , and intersecting this perpendicular with an arc of radius 
oKuy we get the point K  and line segment kK  representing the distance of 
the point K  from the H  plane, i.e. the distance of the projection k ' from the 
x-axis. The angle a'k'b' represents the vertical projection of the angle AKB 
which is equal to its horizontal projection akb.
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This and some previous sections have been devoted to the solution of 
problems involving the construction of the common elements of the various 
geometric figures (for instance, the construction of the point of intersection 
of a straight line and a plane, or Problem 1 of this section). Such problems 
are called ‘positional’ as opposed to metrical problems in which the length 
of line segments, angles, areas of surfaces, etc. are determined.

QUESTIONS TO SEC. 38

1. In what succession are the axes of revolution to be taken to bring an 
oblique line to the position in which it will be arranged perpendicular to 
the H  plane? to the V plane?

2. How are the true length of a segment of an oblique line and its angles 
with the planes H  and V determined?

3. How is the distance from a point to an oblique line determined?
4. How is the distance from a point to an oblique plane (to a profile plane) 

determined?
5. How is the distance between two parallel planes (between two parallel 

lines; between skew lines) determined?
6. Is it possible to construct the projections of a segment of an oblique 

line by the method of revolution given the angles of its inclination to the 
planes H  and V? If it is possible, then how is this done?

7. What does the parabola constructed in Fig. 244 mean?
8. How is the true size of a plane angle found?
9. How is the bisector of an angle constructed in the drawing?
10. How can we find the true size of an angle between a straight line and 

a plane?
11. How can we find the true size of an angle formed by two planes?
12. How do we construct the projections of a circle contained in an ob

lique plane?



CHAPTER 6

POLYHEDRONS

Sec. 39. Constructing the Projections 
of Polyhedrons

The construction of the projections of a polyhedron on a plane is reduced 
to constructing the projections of points. For instance, when projecting a 
pyramid SABC on the V plane (Fig. 256, left), we construct the projections 
of the vertices S, A, B, and C, and as a consequence, the projections of the 
base A&C, faces SAB, SBC, SAC, edges SA , SB, etc.

Also, when projecting a trihedral angle* with the vertex S  (Fig. 256, 
right), we, besides the vertex S , take one point on each of the edges of the 
angle (points K, M, N ) and project them on the V plane. As a result, we get 
the projections of the edges and faces (plane angles) of the trihedral angle 
and, on the whole, the angle itself.

Figure 257 represents a polyhedral solid ACBBiD. .. (i.e. a portion of 
space bounded from all the sides by plane figures—polygons) and its projec
tion on the H plane, i.e. the figure acfie\d\def. Any point located inside the 
outline of this figure is the projection of at least two points on the surface 
of this solid. For instance, the point designated by two letters m and n serves 
as the projection of the points M  and N  lying on a common projecting line.

A point lying on the outline of the projection is the projection of one 
point (for instance, a is the projection of point A), or several points and some
times a set of points (for instance, b is the projection of not only the point B 
but also of a set of points of the face ABC situated on the projecting line Bb).

The totality of projecting lines passing through all the points of the 
outline of the projection form a projecting surface. The given solid is enclosed 
by this surface touching it from inside. For the solid represented in Fig. 257 
the projecting surface consists of the planes Si, S2, S3, etc. The line of con
tact of the projecting surface with the solid is called the contour of the solid

*In this case a convex one, i.e. a dihedral angle which lies entirely on one side of any 
plane containing one of its faces extended infinitly.
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with respect to the chosen plane of projection. In Fig. 257 the contour is 
represented by the polygonal line ACF1E 1D1DEFA*.

In parallel projecting the projecting surface is cylindrical (see Sec. 1). 
If the contour of a solid contains rectilinear segments with reference to the 
plane of projection, then the projecting surface for each of such segments is 
reduced to a plane.

The line segment bb± drawn in the figure is the projection of the edge BB i 
visible with respect to the H plane. It is obligatory to show all visible edges 
on the projection of a solid.

The projection of the line segment FFi is obtained inside the outline of 
the projection. It is drawn with a short-dash line, since, when projected on 
the H plane, the points of the line segment FFi are invisible.

*We may consider that in this case all points of the line segments A B , B C , D BX, 
ByD x, EF, and E YFX, and even the areas of the triangles ABC  and DBxDlf and portions 
of the trapezoid EFFxEi belong to the contour of the solid, since the projecting planes 
Si,  S3, and S5 pass through these figures, respectively.
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The construction of the projection of a faced suffice is also reduced to 
the construction of the projection of some points and straight lines belonging 
to this surface. The projection of the surface bounding a solid has an outline 
which coincides with the outline of the projection of this solid. When repre
senting an infinitely extending surface, a certain portion of this surface is 
usually separated with wavy lines thus establishing a conventional contour 
with respect to the plane of projection.

Sec. 40. The Drawings of Prisms and Pyramids

Suppose we know the shape and position of the figure obtained as a result 
of intersecting all of the lateral faces of a prism by a plane, as also the direc
tion of its edges (Fig. 258). This is the way a prismatic surface is usually 
specified. Intersecting a prismatic surface with two parallel planes, we get 
the bases of a prism (Fig. 258). A prism may be specified by one of its bases 
and the altitude or the length of the lateral edge.

When positioning a prism for its representation, it is advisable to arrange 
its bases parallel to the plane of projection.

What indications enable us to determine that nothing else but a prism 
(or, in particular, a parallelepiped) is represented in a given drawing? The 
answer is: the drawing contains only rectilinear segments* which serve as 
projections of either edges, or faces; parallelograms or rectangles as the

*The condition common to all polygons.
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projections of the lateral faces; and any polygon as the projection of the 
base.

Examples are given in Figs. 258-60 where represented in the system F, H 
are a right triangular prism, an oblique quadrangular prism, and a cube 
(equal edges and rectangular faces testify to the fact that it is a cube).

But it would be a mistake to assert that the solid represented in Fig. 261 
is necessarily a prism or a parallelepiped in spite of the fact that some of the 
above discussed indications are present. Shown in Fig. 261 (right) are pos
sible solutions. Obviously, to define more exactly in this case the profile 
projection or designation of the vertices should be given.

Figure 262 depicts an irregular quadrangular prism (with trapezoids as 
its bases). Figure 263 (top) shows the profile projection of this prism con
structed with the aid of an auxiliary straight line. The same figure (bottom) 
represents the prism referred to the coordinate planes coinciding with its 
faces. In this case the third projection is constructed using the coordinates 
of the vertices.

To specify the surface of a pyramid we must have the section figure cut 
off by a plane intersecting all the lateral faces of the pyramid and the point 
of their intersection. A pyramid is usually specified in the drawing by the 
projections of its base and vertex, and a frustum of a pyramid by the pro
jections of both bases.

When positioning a pyramid for its representation it is advisable to 
arrange its base parallel to the plane of projection. Figure 264 demonstrates 
an irregular triangular pyramid with the base parallel to the H  plane repre
sented in the system F, H. The drawing gives a clear representation of the 
shape of the base and lateral faces. Two projections are sufficient, in general, 
for a pyramid, provided one of them shows the shape of the^ase. But consid
ering the solid represented in Fig. 265, it would be a mistake to assert that 
it is nothing else but a pyramid, since we are misled by both given projections. 
Here in the system F, H  the form of the line located in the profile plane re
mains undetermined. This line may be a curve and, consequently, the faces 
containing this curve will not be plane figures (see the right-hand picture in 
Fig. 265). Obviously, the profile projection here is of great help, it would give 
a definite answer to the question whether the given solid is a pyramid or not*
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Fig. 265

Figure 266 illustrates how, for instance, the coordinate axes may be 
taken for a given pyramid: the z-axis is directed along the altitude, the coor
dinate plane xOy being coincident with the base of the pyramid. The coordi
nate axes are represented by their projections. With such arrangement of the 
axes only one coordinate (the z-coordinate) is sufficient to determine the 
vertex S  of the pyramid.

If it is required to construct a point lying on one of the faces of a poly
hedron on both of its projections, then this point must be “tied” with the 
corresponding face by a straight line.
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In Figure 259 point K  is constructed on the face ABCD with the aid of a 
segment of a straight line KM. Suppose it is required to find the horizontal 
projection of the point K, given its vertical projection k ' ; moreover, point 
K must lie on the face ABCD. In this case we first construct the vertical 
projection of the segment of an auxiliary line (k'm')9 and then the horizontal 
projection of this segment on which the horizontal projection of the point 
K is determined. Since the segment k'm' is parallel to a'b\ then km is also 
parallel to ab.



156 DESCRIPTIVE GEOMETRY

S' S'
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Fig. 269
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Figure 264 shows how a point K  is constructed on the face SAC by means 
of a straight line drawn through the vertex of the pyramid. If the horizontal 
projection k of the point K  is given and it is required to find the vertical 
projection k \  then the segment sm has to be first constructed. We then find 
the point m' with the aid of the point m, obtain the segment sfm' and on it 
the required projection k \

Figure 267 represents a frustum of a pentagonal pyramid and shows the 
construction of a point K  on the face ABDC by its projection k given, using 
a segment of the straight line DM .

In general, an auxiliary line for constructing a point on a face is chosen 
arbitrarily, but one thing should always be borne in mind: the constructions 
involved should be as simple as possible.

Figure 268 represents a regular triangular pyramid with a prismatic hole. 
The construction is carried out using the vertical projection specified com
pletely. We can see in the drawing how points 1 and 5 are constructed on the 
horizontal projection with the aid of straight lines drawn through the ver
tex S . Points 5, 4, and 6 (on the horizontal projection) are found with the aid 
of the straight lines drawn on the faces SAB and SAC parallel to the H  plane. 
The horizontal projections of these lines pass through the point m parallel 
to ab and ac. Point 2 can be found here either in the same way as point 3, 
or with the aid of the profile projection.

Figure 269 gives an example of a polyhedron called the prismatoid. 
The parallel bases of such a polyhedron represent polygons with an arbitrary 
number of sides, its faces being triangles or trapezoids (in Fig. 269, for 
instance, a triangle ADE and a trapezoid BHGC).

Sec. 41. Systems of Arranging Views 
in Mechanical Drawings

Mechanical drawings are made according to the principle of orthogonal 
projection which makes it possible to obtain the true shapes and dimensions 
of the objects to be represented. In other words, the objects are represented 
in the drawing without distortion.

A combination of properly arranged projections ensures the represen
tation of the shape of an object and its location in space. Each projection 
presents a picture corresponding to a definite direction of viewer’s sight 
(see Fig. 270).

Technical drawings use various representations conveying different infor
mation. They are subdivided into views, sectional views, and sections. Here 
we shall dwell only on view.

The view is defined as a representation of the visible part of the surface 
of an object facing the viewer. Hence, a view represents not the whole object, 
not all of its faces, edges, etc., but only those facing the viewer. On the 
contrary, any projection gives a complete representation of an object. 
Consequently, there is a difference between a projection and a view: the 
projection represents the whole surface of an object, whereas the view depicts
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its portion, i.e. the part facing the viewer and seen by him. But if we realize 
the indication of the standard allowing the view to show (iwith short-dash lines) 
the invisible portions of surfaces, then the difference between a projection and 
a view exists no longer. For instance, in Figs. 268 and 269 each of the views 
completely coincides with the corresponding projection.

It was mentioned in Sec. 5 that in making mechanical drawing of various 
machines and their parts we have to resort to other planes of projection 
(besides V, H , and W). Figure 271 illustrates six faces of a cube taken for 
the main planes of projection. All of them are brought into coincidence with 
the plane of the drawing, as is shown in Fig. 270. In space the plane S  is 
parallel to the plane W, T  to H , and B to V. With respect to each of the planes 
the viewer must occupy the same position as he occupies relative to the 
planes V> H, W, the object must be situated between the viewer and the appro- 
priate plane of projection.

The six principal views obtained on the above mentioned planes of pro
jection and arranged as in Fig. 271 are called: front or main view (on V); 
top view (on H); left-hand view (on W); right-hand view (on 5); bottom view 
(on T) \ and rear view (on B). All these views should always be in horizontal 
or vertical alignment with the front or top views; projectibility from one 
view to another is very important.

The obtained arrangement of views corresponds to the first-quadrant 
system (the first dihedron system), or European system. This system is used 
in the USSR and almost in all European countries. There exists another 
system—the third quadrant system (the third dihedron system)—called the 
American system which is practical in the USA, Great Britain, the Nether
lands, Canada, and some other countries. In this system the plane of pro
jection is supposed to be arranged between the viewer and an object. In
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Figure 272 (left) the prism is situated behind the vertical plane of projection^ 
and below the horizontal plane; the profile plane of projection is also shown* 
(i.e. the prism is located in the seventh octant). Arrows indicate the directions, 
of viewer’s sight. The object is viewed here as if through “glass” planes. 
The arrangement of views thus obtained (in this case the front view, top view, 
and left-hand view) is shown in Fig. 272 (right). Here, as in Fig. 271, the 
drawing is based on the front view (the main view\ but the top view turns 
out to be located above the main view, and the left-hand view is not on the 
right (see Fig. 268), but on the left of the main view.
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Thus, regardless of the system used, when drawing the main view, the 
latter should be placed with respect to the plane V so that it occupies (if 
possible) the working position and reveals its shape and dimensions to the 
best advantage. The number of views in an orthographic drawing must be 
minimum but sufficient to form a complete conception of the shape and 
dimensions of the object.

Sec. 42. Prisms and Pyramids Cut by a Plane or 
by a Straight Line

The plane sections of prisms and pyramids are closed figures, the vertices 
and sides of which are determined by intersections of a given plane with the 
faces and edges of the given geometrical solid. Hence, to construct sections, 
one has to find the points of intersection of the edges with a given plane or to 
construct line segments along which the plane intersects the faces of a prism 
or a pyramid. In the first case the construction is reduced to the problem 
of intersection of a straight line and a plane (so-called edge method), in the 
second case to the problem of mutual intersection of planes (the face method).

When a secant plane is parallel to none of the projection planes, a figure 
obtained in section is projected in a distorted form. Therefore, if it is required 
to  determine the true size of the section figure, one of the methods considered 
in Chapter 5 should be applied.

Figure 273 shows the intersection of a right quadrangular prism by a plane 
specified by two intersecting lines EF and EG. Let us designate this plane by 
the letter P.

In this case the section figure is a quadrilateral whose vertices represent 
the points of intersection of the edges of the prism with the plane P. Since 
the prism is a right one and its base is parallel to the H plane, the horizontal 
projection of the section is determined at once, without any special construc
tion—it coincides with the projection abed. Obviously, it is possible to find 
points K and L at which the edges of the prism passing through the points 
A and D cut out the plane P. It is done with the aid of a plane S  containing 
a face of the prism SX P  = 1-2, whence we obtain points k' and /'. Passing 
a plane T , we obtain TXP = 3-4 and points m and n.

Thus, the method of construction illustrated in Fig. 273 is reduced to 
the use of auxiliary planes S  and T  passing through the appropriate faces of 
a prism, and to the construction of line segments KL and MN  along which 
the faces intersect with the plane P.

The vertical projection of the line of intersection consists of a visible 
and an invisible portions, the visible portion being located on the visible 
faces facing the viewer.

In Figure 273 the lower portion of the prism situated below the plane P 
is represented as invisible. The line of intersection is drawn only on the faces 
of the prism.

If the secant plane is perpendicular to one of the projection planes (as in 
Fig. 274, left), then the section figure is obtained without any additional
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constructions: the vertical projection k'p'm'n' is situated on the trace Ov, the 
horizontal projection (kpnm) coinciding with the projection of the prism.

Figure 274 (right) shows the intersection of a prism by a plane O speci
fied by two intersecting lines AB and BM2, the latter being parallel to the 
edges of the prism. Hence, in this case the cutting plane is an oblique one 
parallel to the edges of the prism. The figure obtained in the section is a 
parallelogram 1-2-3-4, whose sides 1-2 and 3-4 are parallel to the edges 
of the prism. To draw these sides, we have to construct the trace of the 
plane Q on the plane containing the base of the prism and to intersect the 
base by this trace along the line segment 1-4.

Illustrated in Fig. 275 is a pyramid cut by an oblique plane P represented 
by its traces. The problem is reduced to finding the points of intersection 
of the edges SA , SB, and SC with the plane P, i.e. to the problem of intersec
tion of a straight line and a plane (see Sec. 25). Let us find the point L at 
which the edge SB cuts the plane P. Proceed as follows: (1) draw an auxiliary 
plane through SB, in this case it is a horizontal projecting plane Q; (2) find 
the line of intersection 1-2 of the planes P and Q; (3) find the point L at the 
intersection of the lines SB and 1-2.

Further, since in this case the edge SA is parallel to the plane V, we pass 
through it an auxiliary vertical plane R. It intersects the plane P along its 
vertical line with the initial point 3 . The intersection of this vertical line with 
the edge SA yields a point K.
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Fig. 276

Let us now draw attention to another peculiarity of this example: 
the projection ac is parallel to the trace iV  This is the case when two planes 
have parallel horizontal traces (Ph is parallel to ac, but ac is a part of the 
horizontal trace of the plane containing the face SAC), and the line of inter
section of such planes is their common horizontal line. Therefore we may 
draw through the found point K a straight line parallel to the edge AC 
(or parallel to Ph), and in this way find the point M .

If there were no such peculiarities we would proceed as in constructing 
the point L .

In making the drawing of Fig. 275 we proceeded from the assumption 
that the plane P is transparent, and that the main task was to construct the 
lines on the faces separating the pyramid into two parts.

Let a pyramid (Fig. 276) be cut by a plane P specified by two intersecting 
lines AB and SB, the latter passing through the vertex of the pyramid. 
Consequently, the plane P  cuts off a triangle one of whose vertices is located 
at the point S. To find two other vertices of the triangle (points 1 and 2), 
the trace of the plane P should be constructed on the plane containing the 
base of the pyramid. The remaining constructions are obvious from the 
drawing.

When the surface of a prism or a pyramid is cut by a straight line two 
points are obtained. They are frequently called “entry” and“exit” points. 
To find these points, we have to pass through the given line an auxiliary 
plane and to find the lines of its intersection with the faces; these lines on the
ii*
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Fig. 278

faces turn out to be contained in one plane with the given line, and their 
intersections yield points at which the given line cuts the surface.

We may come across cases when there is no need in such constructions. 
An example is given in Fig. 277 in which the positions of the projections k 
and m are obvious, since the lateral faces of the prism are perpendicular to 
the H  plane. We find points k' and m! using the points k and m.

The construction of the points of intersection of a straight line with the 
surface of a pyramid is shown in Fig. 278. Through the line AB an auxiliary 
vertical projection plane Q is passed. The vertical projection of the figure 
cut off by this plane coincides with the vertical projection of the plane; 
the horizontal projection of the section is found by construction. The points 
of intersection of the horizontal projection of the line AB and the horizontal 
projection of the figure obtained by section represent the horizontal projec
tions of the required points. The vertical projections of the points of inter
section (kf and m') are constructed with the aid of the found horizontal 
projections (points k and m).

We can also construct the points of intersection of a straight line with the 
surface of a prism in the following way. This time we are going to use oblique 
projecting instead of orthogonal projecting. Let us project the prism and 
the line AB (Fig. 279) on the H  plane in the direction parallel to the edges 
of the given prism. The prism will be projected into a triangle c0d0e0 coincid
ing with the horizontal projection of the lower base of the prism, and the 
line AB into a line aob0 which will intersect the sides of the triangle cod0e0
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Fig. 279

at points 2 and 3. Backward projecting yields the projections ki and 
which help us find k[ and k'2.

Thus, we have considered intersections of prisms and pyramids with 
a plane and a straight line. The relevant constructions are reduced to solving 
problems on the intersection of two planes, or a straight line and a plane. 
These problems are of essential importance and are encountered in various 
cases. They also underlie the construction of lines of mutual intersections of 
polyhedral surfaces to be considered in the following section.

QUESTIONS TO SECS. 39-42

1. What is the contour of a solid with respect to a projection plane?
2. How is a prismatic surface specified?
3. What indications make it possible to establish that a given drawing 

represents a prism (or a parallelepiped)?
4. What specifies the surface of a pyramid?
5. What is meant under the term ‘tetrahedron’?
6 . Under what condition are two projections sufficient to represent a 

pyramid?
7. What is a prismatoid?
8 . What is a view in mechanical drawings?
9. What is the difference between a view and a projection and under what 

condition is this difference eliminated?
10. What systems of arrangement of views are used in engineering draw-* 

ings?
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11. How do we construct the figure obtained as the intersection of a prism 
or a pyramid with a cutting plane?

12. How do we construct the points at which a straight line cuts a prism 
or a pyramid (the points of entry and exit)?

13. Is it possible to establish the generality of the methods of this 
construction and of the construction of the point of intersection of a plane 
and a straight line?

14. How is a prism cut by a plane parallel to its lateral edges?
15. How is a pyramid cut by a plane passing through its vertex?
16. How is oblique projecting applied for finding the points of intersec

tion of a prism and a straight line?

Sec. 43. The Mutual Intersection of Polyhedral 
Surfaces

The line of the mutual intersection of polyhedral surfaces can be con
structed by two methods, or by the combination of these methods. Which 
method is to be applied depends on the initial conditions. It is usually pre
ferable to use the method involving simpler constructions. These methods 
consist in the following:

(1) We determine the points at which the edges of one of the surfaces 
intersect the faces o f the other, and the edges o f the second surface intersect 
the faces o f the first (i.e. the problem on finding the intersection of a straight 
line and a plane). Through the found points a polygonal line is drawn in 
a certain succession, which represents the line of intersection of the given 
surfaces. Only the projections of the points lying in one and the same face 
may be joined by straight lines.

(2) We determine the line segments along which the faces of one surface 
intersect the faces of the other (in other words, the problem on finding the 
intersection of two planes). These line segments are segments of the poly
gonal line obtained as the intersection of polyhedral surfaces.

I f  the projection of an edge of one of the surfaces does not intersect the 
projection of a face o f the other even on one of the projections, then the given 
edge does not intersect this face. But the intersection of the projection of an 
edge and a face does not mean yet that the edge and the face intersect in 
space.

Some of the below examples use the above considered general schemes 
of constructing the points of intersection, other examples illustrate how 
particular peculiarities are used for simplifying the constructions involved.

The example given in Fig. 268 may be considered as an intersection of a 
pyramid and a prism. Points 2 and 3 are obtained as a result of intersection 
of the upper and lower faces of the prism by an edge of the pyramid, while 
the lines passing through the points 5 and 6 are yielded by the intersection 
of the same faces with the face SAC of the pyramid.
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Figure 280 shows the surface of a triangular prism intersected by a 
triangular pyramid which is inserted into a hole of the corresponding shape 
made in the prism. The construction is based on finding the points of inter
section of the edges of one polyhedron with the faces of the other. Figure 
281 demonstrates the construction of the points A\ and A2 at which the edge 
SA of the pyramid cuts the faces DEEiDi and EFFiEi of the prism. Through 
the edge SA a horizontal projecting plane Q is passed which intersects (in 
the horizontal projection) the edges of the prism at points 7,2,5. Using these 
projections, we find the vertical projections 7', 2', 3' of the points of inter
section of the plane Q with the edges of the prism. Then we mark points 
<i[ and a'2 at which a's' intersects the triangle 7'2'J'. Hence, a[ and a2 are 
the vertical projections of the points at which the edge SA of the pyramid 
pierces the faces of the prism. The horizontal projections of these points 
(points a\ and a2) are located on the horizontal projection of the edge SA. 
Proceeding in the same way with the edges SB and SC, we find the points 
Bu B2, Ci, and C2 (Fig. 280).

Now we find the points of intersection of the edges of the prism with the 
faces of the pyramid by passing again auxiliary horizontal projecting planes 
(here, as in the preceding case, we may take advantage of vertical projecting
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planes). Examining the edge DZ>i, we mark the intersection points Di and 
Z>3 . The edges EEi and FF\ do not pierce the faces of the pyramid.

To avoid mistakes when making numerous auxiliary constructions, it is 
advisable to tabulate the found intersection points in the following way.

The edge under examination Faces intersected 
by the edge

Points o f intersec
tion o f the edge 

with the face

| No. o f place occu- 
j pied by the point 

in the general 
1 order o f joining 
j  . the points

/ DEE1D 1
i

| 7,(5
SA 1 EFFJLx a 2 I I

/ DEE1D 1 Br 2
Pyramid \ SB I EFFiEx Bt I II

f DFF1D 1 c , : 4
1I SC { EFF1E1 C2 H I

/ SCB 7>2 3
1| DDX \ SAC d 3 5

Prism \ EEi None - -

1[ f f 1 None — —

In our example two separate polygons are obtained. The above table 
indicates the order of forming the polygons by Arabic figures 7, 2 , etc. for 
one, and Roman figures I, II, etc. for the other. This means that the point 
a[ (7) should be joined to the point b[ (2), b[ to d'2 (3), d2 to c[ (4), c[ to

(5), and, finally, dI to a[ (6).
In the constructions shown in Fig. 280 and 281 use was made of auxiliary 

horizontal projecting planes. And though the application of just horizontal- 
or vertical-projecting planes as auxiliary planes for finding the intersections 
of a straight line and a plane, or of two planes (and, hence, also in the cases 
of mutual intersections of polyhedral surfaces) is common practice, since 
it is a convenient method, still we may come across cases when oblique planes 
turn out to be preferable as auxiliary planes, since, when used, they lead to a 
reduced amount of additional constructions. But this should be accom
panied by appropriate conditions. An example is given in Fig. 282. Here the 
bases of both pyramids are contained in a single plane. A straight line is 
drawn through the vertices of the pyramids and its trace (point M) is found 
on the plane containing the bases of the pyramids. Any plane drawn through 
the line ST  passes through the vertices of both pyramids and intersects their 
faces along straight lines (see Fig. 276). The trace of such a plane on the plane 
containing the bases of the pyramid passes through the point m.

We draw, for instance, a straight line m f and take it for the trace of one 
of such planes; in Fig. 282 the trace of this plane coincides with the pro
jection m f
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Such a plane cuts the base of the pyramid ABCS at points n and r. Joining, 
these points to the point s, we obtain the contour of the section by the taken 
plane (in which the edge TF is contained) and* find the projections of the 
intersection points for the edge TF, i.e. points / i  and / 2. The vertical projec
tions of these points of intersections are determined without difficulties.

Using this method, we examine all the edges of both pyramids to reveal 
the points required for constructing the line of intersection.

The points of intersection of the sides of the base are determined on the 
horizontal projection without additional constructions.

The following table contains all necessary data.

i
The edge under 

examination
i Faces intersected by the 
! edge under examination
i
1

Edges intersected by 
the edge under examina

tion
Points of intersection

TF  |

1
A C S Fi
A B S - f 2

E T  {
CBS _ E i

A B S - e 2
D T N one - -

FD {
_ AC A \

AB— As

DE  {
_ BC a 4
— AB A 5

EF  { - BC A 3
— AC A 2

A S N one - —
B S N one - —
C S N one — —

The construction shown in Fig. 282 may be applied even if the base of 
one pyramid is situated, say, in the H  plane, and the base of the other is 
contained in the V plane. In this case we have to find the traces of the straight 
line drawn through the vertices of the pyramids on the horizontal and vertical 
planes of projection and the horizontal and vertical traces of each auxiliary 
plane.

The method demonstrated in Fig. 282 for two pyramids may be applied 
for a mutual intersection of a prism and a pyramid as well. Here a straight 
line is drawn through the vertex of the pyramid parallel to the edges of the 
prism. The planes passed through such a line will cut the faces of the prism 
along straight line parallel to its edges, and the faces of the pyramid along 
the lines passing through its vertex. In the case of a mutual intersection of 
two prisms auxiliary secant planes may be taken parallel to the edges of both 
prisms.
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The method of replacing projection planes may also be practiced if one 
o f the intersecting surfaces is a prism. In this case on obtaining the projec
tions of the polyhedrons on a plane perpendicular to the edges of the prism, 
we use the faces of prism in this position as secant planes.

Sec. 44. General Methods for Developing Faced 
Surfaces (Prisms and Pyramids)

A prismatic surface can be developed following one of the two possible 
schemes.

When using first scheme (Fig. 283) proceed as follows:
(1) intersect the surface by a plane perpendicular to the edges;
(2 ) determine the length of the segments of the polygonal line obtained 

us the intersection of the prism by this plane;
(3 ) develop the polygonal line into a straight line AqDq and on the per

pendiculars to the line AoDq drawn through the points A0, B0, . . .  lay off 
the lengths of the segments of the edges: AoA, AoAl9 BoB, B0Bl9 and so on;

(4) draw the line segments AB, BC9 and CD, and also the line segments 
A\B\, B\C-[, and C\D\.
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The second scheme for developing a prismatic surface consists in the 
following (Fig. 284):

(1) divide the quadrilaterals (the faces) into triangles, using diagonals for 
this purpose;

(2 ) determine the lengths of the sides of these triangles;
(3) construct consecutively the triangles 7, 2, 5, etc. in the plane of the 

drawing.
We can also obtain the required development following the pattern re

presented in Fig. 287.
Figures 285 and 286 give an example of developing the lateral surface of a 

prism. The development is constructed here according to the first scheme. 
All preparatory constructions for the required development are carried out 
in Fig. 285. First of all, an additional plane of projections is introduced. 
It is perpendicular to the H plane and parallel to the edges of the prism. To 
obtain a normal section a plane Q is drawn perpendicular to the edges of 
the prism. In the system S , H  the plane Q is perpendicular to the plane S ,
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ar

Fig. 285

and therefore the projection of the section figure onto the plane S  is found 
on the trace Qs. Since the plane Q is perpendicular to the edges of the prism, 
their projections on the plane S  are perpendicular to Qs, and since the plane 
S  is parallel to the edges, their lengths are equal to the lengths of the line 
segments ases, bsfs, etc. Further, bringing the Q plane into coincidence with 
the H  plane, we determine the true size of the section (the quadrilateral 
1q 2q 3o 4o).

Figure 286 shows the required development: laid off on a straight line 
in succesion are line segments 1 - 2  = 7020, 2 - 3  — 2 o 3 0, etc., and through 
points 7, 2, etc. perpendiculars are drawn to this line. On them line segments 
1 A  = l saS9 I E  = 1 ^ ,  2 B  = 2 sb s , etc. are laid off. Finally, polygonal lines 
A B C D A  and E F G H E  are constructed.

A different construction is given in Fig. 287. On constructing the pro
jection of the prism on the plane S  which is parallel to the edges of the prism, 
we draw from points es, hs, gs, f s, as, ds, cs, and bs straight lines perpendicular 
to esas. From the point es as centre we describe a circular arc of radius equal 
to eh to intersect the straight line drawn from the point hs. From the point 
H o  thus obtained we strike an arc of radius equal to hg to intersect the line
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a'

drawn from the point gs. As a result, we get a point G o ,  and so on ( G o F 0 = 
= gf, F0Eo =  fe ). From the points G0, F0, F 0 we draw straight lines 
parallel to esas to intersect the corresponding lines drawn from the points 

, cS9 bsy and
This alternate version turns out to be expedient, when the lengths of the 

sides of the base can be taken directly from the drawing.
The lateral surface of a pyramid can be developed using the following 

scheme:
(1) determine the lengths of the edges and the sides of the base of the 

pyramid;
(2 ) construct in the plane of the drawing the triangles representing the 

faces of the pyramid.
Constructed in Fig. 288 is the development of the lateral surface of a 

pyramid with the sides of a triangular section drawn on the faces of the
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pyramid. The length of each of the edges is found, and then a triangle AoSoB^ 
is constructed by its sides: the base AqBq is taken equal to the horizontal 
projection a b , the lateral sides being taken equal to the true lengths of the 
edges S A  and S B  (i.e. to the line segments s ' a [ and s ' b [ ) .

Further, on the side S o B 0 a second triangle is constructed, the other two 
sides being taken of the following dimensions: the side B 0C o  is equal to the 
horizontal projection b e , and the side S 0C 0 to the length of the edge S C  (i.e. 
to the segment s rc [ ) .  A third triangle is constructed in a similar way.

Thus, the development of the lateral surface of the pyramid is obtained.. 
If now on the sides S 0A 0, S o B 0, and S 0C 0 we lay off line segment S o K 0y 
SoMo, and SoNo equal to the segments of the respective edges of the pyramid* 
cut by a plane, then we shall get a polygonal line K o M 0N o K 0 consisting of the: 
sides of the section figure.

QUESTIONS TO SECS. 43-44

1. How do we construct the line of intersection of two faced surfaces?
2. In what case is it expedient to use oblique planes (as auxiliary ones)* 

when determining the intersection of two pyramids, and how are they 
passed?

3. What schemes do we use for developing surfaces bounding prisms and! 
pyramids ?

4. In what case will these developments be complete?



CHAPTER 7

CURVED LINES

Sec. 45. General

A curved line may be imagined as the path of a moving point in a plane or 
in space*. Archimedes’ spiral and a helix are well known examples of such 
lines. A curved line can also be obtained as a result of the mutual intersection 
of surfaces (for instance, of two cylindrical surfaces), or when a surface z> 
cut by a plane (this is exemplified by an ellipse obtained when the lateral 
surface of a right circular cylinder is intersected by a plane forming an acute 
angle with the axis of the cylinder). In a number of cases a curved line re
presents a locus of points which satisfy one or more conditions stipulated for 
this curve (circles, ellipses, parabolas, and so forth).

A curve is defined by the positions of its points, the latter being defined 
by their coordinates.

In descriptive geometry curved lines are studied on the basis of their 
projections. The construction of the projections of lines depends essentially 
on whether all the points of a given curve lie in one plane or not. If all points 
of the curve lie in one plane, we have a plane curve, examples of which are 
the circle, ellipse, parabola, hyperbola, Archimedes’ spiral, and so on. A 
curved line that does not lie entirely in one plane is a space curve (line of double 
curvature). These curves are exemplified by helices, lines of intersection of 
right circular cylinders and cones.

To construct the projections of a curve (in the plane or in space), we have 
to construct the projections of a number of points belonging to this curve 
(see Fig. 289). An example of plotting a plane curve point by point was given 
in Fig. 119 (Sec. 18).

A space curve is projected into a plane curve, and a plane curve is pro
jected in the form of a plane curve or a straight line if the curve is contained 
in a plane perpendicular to the plane of projection.

*A curved line must have no rectilinear sections throughout its length.
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A line is considered to be regular if it is generated in accordance with a 
geometrical law. If, in addition, a curve is defined in Cartesian coordinates 
by an algebraic equation, then it is called an algebraic curve*. These curves

• v2are exemplified by the elhpse whose equation is 4--^- = 1. The degree of
the equation defines the “order” of a curve: the ellipse is a curve of the 
second order. The curve representing a projection of a curve of a certain 
order preserves the same order or turns out to be a curve of a lower order.

A tangent line to a curve is generally projected into a tangent line to the 
projection of this curve. If, for instance, a tangent line is drawn to a circle 
contained in a plane forming an acute angle with the plane of projection, 
then it is projected into a line tangent to the ellipse representing the projec
tion of this circle. Figure 289 demonstrates a space curve, its vertical and 
horizontal projections, a line tangent to the curve at its point AT, and the 
corresponding projections of this tangent line. The projecting plane passing 
through the tangent line to a projection of the curve touches the curve in 
space.

To get a clearer imagination of a curve in space it is advisable, when speci
fying a plane or a space curve by its projections, to indicate on the projections 
some points characteristic for the curve itself, or for its location relative to 
the projection planes. For instance, there may be indicated the points most

*If a curve is defined by a non-algebraic equation, then it belongs to transcendental 
curves.
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distant from the projection planes, or nearest to them. This is obtained by 
passing planes tangent to the curve and parallel to the corresponding planes 
of projection. Thus, in Fig. 290 the plane S  which is parallel to the V plane 
makes it possible to determine that the point G of the represented space 
curve is most distant from the V plane.

Curvature of a curved line (a plane curve or a space curve) may be con
stant (along its entire length or over separate segments), or vary at different 
points of the curve. For instance, curvature of a circle or a helix remains 
unchanged throughout its length, while curvature of an ellipse, repeated in 
its quadrants, varies continuously within the limits of one quadrant.

Curvature of a curve is expressed by a number. It characterizes the curve 
at a given point, or, more precisely, over an infinitely small arc (i.e. within 
the neighbourhood of this point).

The length of a certain segment of a plane (or space) curve is determined 
approximately by replacing a curved line by a polygonal line inscribed in 
this curve, and measuring the lengths of the segments of this polygonal line 
(this, of course, does not refer to the curves whose lengths can be determined 
by rather simple computation*). To reduce [the error, the lengths of the 
segments of the polygonal line should differ but little from the lengths of the 
arcs of a curve whose chords are these segments. Figure 291 shows how the 
length of a curve ABC is determined: the horizontal projection (curve abc) 
is subdivided into small parts and “developed” into a straight line on the 
x-axis so that the segments aolo9 lobo, etc. are respectively equal to the chords 
al, lb , etc. At points ad, 0, etc. perpendiculars are drawn to the x-axis, 
and the z-coordinates of the points on the curve are laid off on them. As a 
result, we get a polygonal line whose length may be approximately taken 
for the length of the curve ABC.

*For instance, the circle, a turn of the helix (see Sec. 48).

12-23012
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Fig. 294

Sec. 46. Plane Curves

Revolving a secant line KSi (Fig. 292) about the axis K  so that the point 
Ki tends to the point K , we obtain a limiting position KT, i.e. the position 
of the tangent line to the curve at its point K. The tangent line indicates the 
direction of motion of the point generating the curve. The direction of the 
tangent line at a certain point of a curve is called the direction of the curve at 
this point.

Drawing at the point K  a straight line KN perpendicular to AT, we obtain 
a normal* to the curve at its point K. The normal to a circle coincides with 
the direction of its radius. The construction of a normal to an ellipse is shown 
in Sec. 21.

The curve at point K  (Fig. 292) is smooth: it has one tangent at this point. 
If a curve consists only of such points, then it is a smooth curve (Fig. 293, 
left). But a curve may have points (see Fig. 293, right) at which there are two 
tangent lines intersecting at an angle not equal to 180°. Such points are called 
salient points of a curve, and the latter is not smooth at such a point, as if 
two curves {AB and BC) intersect at such a point at a certain angle. If this 
angle (cp) turns out to be equal to 180°, then the curves AB and BC will get 
in touch with each other, and either of them will appear smooth at point B. 
Touching curves have one and the same tangent line at their common 
point, and the normals to the curves at this point are located on a single 
perpendicular.

♦From the Latin ‘normalis’ meaning ‘rectilinear’, ‘straight’.
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Fig. 296 Fig. 297

In Figure 294 a tangent KT and a normal KN are drawn at point K  on a 
curve. If at all points of the curve the same arrangement is repeated (with 
respect to the tangent and the normal within the neighbourhood under 
consideration), then the curve is convex and its points are regular (for in
stance, the ellipse).

Figure 295 illustrates a number of irregular, or so-called singular points: 
a point o f inflection (A) at which the curve intersects the tangent line, and 
two cusps (B and C) at which the curve has a “beak” and a tangent common 
for both branches (point B is called a cusp o f the first kind, and C a cusp o f the 
second kind). Hence, a cusp (or spinode) is a double point at which the two 
tangents to the curve are coincident and the direction of motion of the point 
describing the curve is reversed. A cusp of the first kind (or simple cusp) 
is a cusp in which there is a branch of the curve on each side of the double 
tangent in the neighbourhood of the point of tangency. A cusp of the second 
kind is a cusp for which the two branches of the curve lie on the same side of 
the tangent in the neighbourhood of the point of tangency. A double cusp 
is the same as a point of osculation (see below).

Figure 296 represents two more singular points: a node (Z>), and a point 
of osculation (E). A node is a point at which two parts of a curve cross and 
have different tangents (point D on the left-hand curve). A point of osculation 
is a point on a curve at which two branches have a common tangent and 
each branch extends in both directions of the tangent. It is also called a 
tacnode and a double cusp (point E  on the right-hand curve).

All mentioned singular points may occur on the projections of plane 
curves. To judge the character of its points, it is sufficient for a plane curve 
to have only one projection (provided this projection is not a straight line), 
since any singularity of this projection represents the same singularity of the 
plane curve itself.

The curvature of a plane curve at some o f its points A i (Fig. 297) is regarded 
as the limit to which tends the ratio o f the angle between the tangents drawn 
at two neighbouring points A\ and A 2 o f the curve to the arc A 1A2 as the 
point A2 tends to A \:

lim =  k.
AiA2

12*
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Thus, the c urvature of a curve at its point A is defined as the limiting value 
of the angle cp± to the arc A\A2, Or in other words, the absolute value of the 
ratio of the change in the angle of inclination of the tangent line along a given 
arc to the length of the arc is the average curvature along the arc. The limit 
of the average curvature as the length of the arc approaches zero is the cur
vature. We shall denote curvature by the lower-case letter k.

Obviously, the angle (p may also be represented as the angle between 
the normals to the curve at the points A\ and A2.

If we imagine a circle passing through the point A i (Fig. 297) and two 
adjacent to it points on the curve tending to the point A u then the circle will 
come to its limiting position when the point of intersection of the normals 
(Ci) occupies its limiting position thus determining a certain radius C\A\. 
Moreover, the circle will get in touch with the curve at point A\. In this posi
tion the circle and the curve will have a common tangent and a common 
normal on which the centre of the touching circle is located.

The following terms are associated with the notion of curvature: the 
circle of curvature o f a curve at a given point; the centre of curvature (or the 
centre of the circle of curvature); the radius of curvature (or the radius of the 
circle of curvature). The curvature of a curve at any of its points is the recipro
cal of the radius of curvature: k = —. Obviously, for a circle, the osculating
circle at any point of contact has a radius equal to the radius of the given 
circle. Hence, the curvature o f a circle at any of its points is the reciprocal of
the radius of this circle: kcircie =  - i -  • The greater R , the less is k.

Let us define the above terms: the circle tangent to a curve on the concave 
side and having the same curvature at the point of tangency is called the 
circle of curvature of the curve (at that point). Its radius is the numerical 
value of the radius of curvature, and its centre is the centre of curvature.

Figure 298 (left) shows an ellipse with the centres of curvature at verti
ces Ai and A2 located on its major axis, and at vertices B± and B2 on its 
minor axis. To determine the positions of the centres of curvature, we take 
advantage of the known formulas for the radii of curvature at the vertices
of the ellipse: ri = — (for the vertices A\ and A2), and r2 = -r- (for the
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vertices B i and B2)9 where a is the semimajor axis and b is the semiminor 
axis of the ellipse.

The right-hand drawing (Fig. 298) illustrates the construction of the 
centres of curvature Ci and C3, and determination of the radii of curvature 
at the vertices A 1 and B\. Using the given semi-axes OAi and OBu we con
struct a rectangle OB1DA1 and its diagonal A 1B 1. Then from point D a 
perpendicular is dropped on this diagonal to intersect the major axis at 
point C i  and the extension of the minor axis at point C 3. If circular arcs 
are drawn—one from the point Ci of radius C1A2, and the other from the 
point C3 of radius C3i?i, then a gap is obtained between these arcs, where, 
with the aid of a French curve, an arc is drawn touching the two circular 
arcs. To draw this arc more accurately, it is advisable to find a point belong
ing to an ellipse as it is shown on the same drawing for the point M  on the 
straight line drawn through the focus F2 perpendicular to the axis AiA2 
of the ellipse. The construction is accomplished in the following succession: 
the focus F2 (see Sec. 21), arcs of radii OA\ and OB 1, perpendicular to A\A2 
erected at the point F2 to intersect the arc at point 7, radius 0-7, and through 
point 2 a straight fine parallel to OA2. Using the found points Ci and C3, 
we can find two more centres, and with the aid of the point M —three more 
points needed for constructing the remaining part of the curve. This com
bined line approximates the ellipse rather closely.

What plane curve has a constant curvature? The answer is: the circle
(see above: A:Circie =  , where R is the radius of the circle). If the straight
line is taken for the circle at R =  0 0 , then here the curvature is also constant,
i.e. k =  0 .

An approximate construction of a tangent and a normal to a smooth 
curve at its point K  is shown in Fig. 299.

We begin the construction with drawing an auxiliary straight line EF 
roughly perpendicular to the supposed direction of the tangent to the curve
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ABCD. Then, through the point K  we draw several straight lines intersecting 
the curve ABCD and the straight line EF. If now we lay off A±A2 = AK> 
B iB2 =  BK, C1C2 =  CK9 D iD2 =  KD, etc. and through the points A2, B2> 
C2, Z>2, . . .  draw a smooth curve, then its intersection with the line EF will 
yield a point M  which is a second point defining the tangent to the curve 
ABCD at the point K*.

Figure 300 illustrates an approximate construction of the centre of cur
vature at some point K  of a curved line.

We take on the curve several points A 1, A2, . . .  close to the point K  and 
draw tangents to the curve at these points (including the point K). Then we 
lay off arbitrary, but equal to one another, line segments Aidi, A2a29 Kk, . . . ,  
and draw a smooth curve through the points au a2> K • • • thus obtained. 
The intersection of the normals at the points K  and k yields a point C 
which is the required centre of curvature, the radius of curvature r being 
equal to CK. Whence the curvature at point K  is determined, it is equal
to — .r

If the centres of curvature are constructed at a number of points of a 
given curve, then through these centres we may pass a curve called the 
evolute which is the locus o f the centres o f curvature of the given curvef 
The given curve is then called the involute with respect to its evolute*. 
For instance, in the curve called the involute of a circle, the centres of cur
vature at different points of this curve are located on a circle which is just 
the evolute with respect to the given involute.

Sec. 47. Space Curves

Many things considered with respect to plane curves are applicable to 
space curves. For instance, the tangent to a space curve is also obtained 
from the secant KSi (see Fig. 292) when the point Ki merges with K. A space 
curve may also have various points: regular points, points of inflection, 
cusps, etc. But while for a plane curve we could draw through the point K 
(Fig. 292) only one perpendicular KN (a normal) to the tangent KT, in the 
case of a space curve we have an infinite number of such perpendiculars at 
the point of tangency—the fact which leads to the notion of a normal plane. 
Furthermore, for a plane curve one projection suffices to judge on the 
character of its points, for a space curve we need two projections for the same 
purpose. For instance, examining the horizontal and vertical projections 
represented in Figs. 289 and 290, we come to a conclusion that there is no 
double point on the curve in space, despite the fact that the horizontal 
projection of the curve has such a point. The same as for a plane curve, 
the tangent to a curve in space is projected into a tangent to the projection of

♦The curve is an example o f the so-called error curve.
♦From the Latin ‘evoluta’ meaning ‘developed’.
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this curve (Fig. 289). A projecting plane passed through a tangent to a pro
jection of the curve touches the curve in space. #

A plane curve lies entirely in a plane. As far as a space curve is concerned, 
we may speak only of a plane approaching the curve most closely at the 
point under consideration. Such plane is said to be an osculating plane. 
Suppose Fig. 292 represents a segment of a space curve (but not a plane 
curve). Then three points (K> K i9 and K2) of this curve define a plane. The 
limiting position of this plane, when the secant KS2 becomes a tangent at 
point K  and the third point approaches the point of tangency most closely, 
defines the osculating plane of the space curve at the point K. Near this point 
we may consider the curve as lying in the osculating plane.

The osculating and the normal planes are mutually perpendicular. This 
follows from the fact that the osculating plane contains the tangent to the 
curve.

The intersection of a normal and an osculating planes yields one of the 
normals called the principal normal. A normal perpendicular to the osculating 
plane is called the binormal.

Added to the osculating and normal planes is a third plane which is 
perpendicular to them. It passes through the tangent and binormal and is 
termed the rectifying plane.

These three planes forming a trihedron, are used as the coordinate planes 
when considering a curve at a given point. The position of the trihedron depends 
on the position of the point on the curve.

Analogously to the centre of curvature for a plane curve as a limiting 
position of the point of intersection of two normals (Fig. 297), we obtain the 
axis of curvature o f a space curve as the limiting position of the line of inter
section of neighbouring normal planes. In this limiting position the axis of 
curvature is parallel to the binormal. Intersecting the principal normal, the 
axis o f curvature yields the centre of curvature, whence we get the radius of 
curvature as the distance from this centre to the point of the curve under 
consideration. The same as for a plane curve, the curvature of a space curve 
is the reciprocal of the radius of curvature. If we imagine the limiting 
approach of three adjacent points on a space curve and the limiting position 
of a circle drawn through them, then we obtain the circle of curvature in the 
osculating plane, its centre being the centre of curvature and its radius the 
radius of curvature. This is the first curvature of a space curve.

If instead of the angle between the tangents, as it happened in the case of 
plane curves, and the ratio of this angle and the length of the arc between 
the points of tangency we take the angle between the osculating planes (it is 
equal to the angle between the binormals) and divide this angle by the 
length of the arc between the points of the space curve under consideration, 
then the limiting value of this ratio represents the so-called curvature of 
torsion or the second curvature of a space curve. Let us remember that space 
curves are also called curves of double curvature.

I f  the tangents to a space curve at all its points are equally inclined to some 
plane9 then such lines are termed the lines of equal inclination (or slope).
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QUESTIONS TO SECS. 45-47

1. What is the difference between a plane curve and a space curve?
2. Into what is a space curve projected?
3. Into what is a plane curve projected?
4. Into what is a tangent to a curve projected?
5. How do we determine the length of some portion of a curve?
6. What is the tangent to a curved line?
7. What is the normal at some point of a plane curve?
8. What determines the smoothness of a plane curve?
9. What plane curves are called osculating curves ?
10. What is a convex plane curve?
11. How many projections are sufficient to judge on the character of 

points of a plane curve?
12. What is the curvature of a plane curve at some of its points?
13. What is the curvature of the circle equal to?
14. How do we construct a combined curve resembling the ellipse if the 

axes of the ellipse are given ?
15. How do we construct the tangent and the normal to a smooth curve 

at one of its points?
16. How many projections are sufficient to judge on the character of 

points of a space curve?
17. What planes are called normal, osculating, and rectifying at some 

point of a space curve?
18. What are the principal normal and binormal at some point of a space 

curve?
19. What are the first and the second curvatures of a space curve?
20. What is understood under “a curve of double curvature”?
21. In what case is a space curve called the curved line of equal slope?

Sec. 48. Cylindrical and Conical Helices

The cylindrical helix represents a space curve of equal slope. A helix 
can be obtained on a cylinder in the following way: clamp a cylindrical rod 
in the chuck of a lathe and set it into uniform rotary motion; bring a thread 
tool into contact with the cylinder and set it into uniform forward motion 
along the cylinder axis; the point of the tool will draw a helix on the surface 
of the cylinder.

Figure 301 illustrates how a cylindrical helix is generated by a point A in 
motion along the generating line (generatrix) EC of a right circular cylinder 
rotating about its axis. The path traversed by the point along the generatrix 
is all the time proportional to the angle of turn of the cylinder. Shown in
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the figure are several positions of this generatix: E0Co, EiCly . . . ;  here the 
arcs E0Eu E iE2, . . .  are of equal length, each of them being equal to nd/n, 
where d is the diameter of the cylinder, and n is the number of divisions 
(in Fig. 301 n =  12). The initial position of the point is denoted by A0, 
the subsequent positions by Ai, A2, etc.

If during the displacement of the generatrix from the position E0C0 to 
the position EiCi the point occupies the position A i, then the line segment 
EiAi will determine the distance covered by the point along the generatrix. 
In the subsequent position of the generatrix (E2C2) the point will be found 
at a height E2A2 =  lE^Ai, and so on. When the generatrix accomplishes a 
complete revolution, the point will cover the distance £ 0 ^ 1 2  =  Y2E\A\.

As the generatrix continues its rotation, the point A begins forming a 
second turn (or revolution) of the helix, occupying the consecutive positions 
A[, A&9 etc.

The distance between the points A0 and A \2 is called the pitch (or lead) 
of the cylindrical helix. The pitch may be chosen depending on specific 
conditions.

The distance between the point A and the axis 0 0  is called the radius of 
the helix, and the axis 0 0  the axis of the helix. The radius of a helix is equal 
to half the diameter of a right circular cylinder on whose lateral surface the 
helix is located. Two quantities—the diameter of the cylinder and the pitch
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of the helix—are the parameters which define a cylindrical helix on the lateral 
surface of a right circular cylinder.

Figure 302 gives an example of constructing the projections of a cylindri
cal helix. First the projections of a right circular cylinder are constructed. 
Then both the circle (which is the horizontal projection of the cylinder) and 
the lead (the line segment h laid off along the axis of the cylinder on the 
vertical projection) are divided into equal number (n) of parts (in our case 
n =  12). The initial position of the point A is indicated by the projections a' 
and a.

Since the axis of the cylinder is perpendicular to the H plane, the horizontal 
projection of the helix coincides with the circle representing the horizontal 
projection of the cylinder surface. The construction of the vertical projection 
of the helix is obvious from Fig. 302, bearing in mind that a point generating 
this line performs two motions: a uniform motion along a straight line and, 
a t the same time, a uniform rotary motion about the axis parallel to this 
line.

The projection on a plane parallel to the cylinder axis, in our case the 
vertical projection of a cylindrical helix, is similar to a sinusoid.

We see on the vertical projection of the helix (Fig. 302) a rise from left 
to right, or a slope to the left on the front (visible) side of the cylinder. If the 
axis of the cylinder is arranged horizontally, then the helix rises leftwards 
and slopes rightwards. This is a right-hand helix. A left-hand helix is shown 
in Fig. 303. Here the line rises from right to left on the front (visible) side 
of the cylinder on the vertical projection of the helix, the slope being directed 
rightwards. If the axis of the cylinder is brought to a horizontal position, 
then the helix rises rightwards and slopes leftwards.
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If a helix is represented without the cylinder and without the projections 
of the points of division, then its direction is indicated by an inscription or 
an arrow as in Fig. 304 in which the left-hand drawing represents a right- 
hand helix, and the right-hand drawing a left-hand helix*.

The development of a complete turn of a cylindrical helix is given in 
Fig. 305. Upon development of the cylindrical surface on a plane, each turn 
of the helix develops into a straight line. This follows from the way a cylin
drical helix is generated: since the circumference of the cylinder base has been 
divided into a given number of equal parts and the lead of the helix has also 
been divided into the same number of equal parts, the development of the 
helix within the limits of its lead (i.e. its complete turn) may be considered as 
the locus of points for each of which the ordinate is directly proportional to 
the abscissa, that is y = kx , which is the equation of a straight line.

The tangents to the helix coincide on the development with the straight 
line into which a turn of the helix is developed.

Figure 305 represents two complete turns (two leads) of a cylindrical 
helix developed into two parallel lines at an angle a to the straight line re
presenting the developed circumference of the base of the cylinder. The slope 
of a cylindrical helix is expressed by the formula

where h is the lead of the helix, and d is the diameter of the cylinder; a is 
called the helix angle.

*A cylindrical helix is well illustrated by a coiled cylindrical spring, a thread on bolts, 
screws, pins, and a cylindrical worm.
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The length of one turn of a cylindrical helix is
L =  yh2 + (ndf.

For one and the same d the magnitude of the 
angle a depends only on the lead of the helix. To 
obtain a small angle of slope, a small lead should 
be taken, and vice versa. If the lead remains 
unchanged for cylinders of different diameters, then 
the helix angle is inversely proportional to the dia
meter of the cylinder.

We may construct the model of a cylindrical 
helix in the following way: take a rectangle with a 
diagonal drawn on it and roll it up into a right cir
cular cylinder. In this case the diagonal of the rec
tangle will form one complete turn of the helix. 
Obviously, the helix is the shortest distance between 
two points on the surface of a circular cylinder, i.e. 
the geodetic line of this surface.

Indeed, we can draw a great number of lines 
between two points on the surface of such a cylin
der, one of these lines representing the shortest dis
tance between the points. Upon development of 

the surface, such a line develops into a straight line. This property is inhe
rent in geodetic lines (geodesics).

Let us consider the following property of a cylindrical helix. Suppose 
(Fig. 301) that to the helix, at any of its points, say A3, a tangent is drawn 
intersecting the H plane at point K3.

The angle between the helix and any element of the cylinder is expressed 
by the angle between this element and the tangent to the helix drawn at a 
point common for the helix and the element. The development shown in 
Fig. 305 indicates that between the given helix and the element of the cylinder 
a constant angle is obtained, i.e. all the tangents to the helix are equally incli
ned to the elements of the cylinder and intersect the H plane at one and the 
same angle a. The same angle was obtained between the developed helix and 
circumference of the cylinder base.

When developing the lateral surface of a cylinder with a helix on it, the 
element A0A3E3 (Fig. 301) takes the form of a right-angled triangle K3A3E3 

in which K3A3 is the tangent to the helix at point A 3, and K3E3 is the pro
jection of the tangent on the plane containing the cylinder base, i.e. the tan
gent to the circumference of its base. Hence it follows that the point K3 
belongs to the involute of the circle, since the tangents to all points of a 
cylindrical helix have traces on the plane of the cylinder base which form 
the involute of the circle of the base of this cylinder.

Let us take advantage of this property for constructing a tangent to a 
cylindrical helix at any of its points. To the helix represented in Fig.306 the 
tangent is constructed at point K. First of all the horizontal projection of
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Fig. 307

the tangent (line segment kl) is drawn perpendicular to ok. From point 1 on 
the involute the projection 1' is found, and then the vertical projection of the 
tangent (the line l'k') may be drawn. The construction is repeated for the 
point L.

We may construct on the cylindrical surface a curved line genera ted  in 
the same way as the helix with the only difference consisting in that the point 
performs not uniform but variable motion along the generatrix obeying some 
law. Such curves are sometimes called helices with a variable lead.

The construction is given in Fig. 307 for a point in uniformly accelerated 
motion along the generatrix. The corresponding displacements of the point 
are given for each of the twelve positions of the generatrix shown in the 
drawing. For instance, during displacement from the eighth to the ninth 
position the point covers a distance equal to the segment C9F9 .

The development of the constructed curve is also given in the same figure. 
Obviously, the helix angle is variable this time.

If a point uniformly displaces along the generatrix of a right circular 
cone, and the generatrix rotates at the same time about the axis of the cone 
with an angular speed, then the path traversed by the point is a conical 
helix*. Its projections are given in Fig. 308. The displacements of the point 
are proportional to the angular displacements of this generatrix. Indicated 
in the drawing are twelve positions of the generatrix with the corresponding 
positions of the point on them. The distance between the corresponding

*A conical helix is well illustrated, fo r instance, by a  coiled conical spring or a 
conical thread.
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Fig. 309
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points of adjacent turns (AqA \2 — h) measured along the generatrix is called 
the lead (pitch) of the conical helix*. #

The projection of a conical helix on a plane parallel to the axis of the 
cone (in our case the vertical projection) represents a sinusoid with a decreas
ing length of wave, the projection on a plane perpendicular to the axis of 
the cone (in our case the horizontal projection) being the spiral o f Archimedes.

Upon development of the lateral surface of the cone (the right-hand 
drawing of Fig. 308), the helix is developed also into a spiral of Archimedes, 
since to a uniform angular displacement of the radius on the developed sur
face of the cone there corresponds a uniform displacement of the point along 
this radius. The mentioned figure represents the development of two com
plete turns of the conical helix.

A helix may be constructed not only on a cylindrical or a conical surfaces. 
This may be exemplified by a helix on the surface generated by an arc BB 
about the axis OO, i.e. on the surface of a torus (see Fig. 309, left). A similar 
helix is sometimes used in cone worms (Fig. 308, right).

QUESTIONS TO SEC. 48

1. How are a cylindrical and a conical helices generated?
2. What is the lead (pitch) of the helix (cylindrical and conical)?
3. What form have the projections of a cylindrical and a conical helices 

on the planes parallel to the helix axis and perpendicular to this axis?
4. How do we recognize what helix (a right-hand or a left-hand) is mar

ked on the surface of a cylindrical and a conical rods? How is the direction 
of run indicated if only a helix is represented?

5. Into what line is each turn of a cylindrical helix developed? The same 
question about a conical helix.

6. How is the slope of a cylindrical helix expressed?
7. What line is formed on a plane perpendicular to the axis of a cylindri

cal helix by constructing the traces of the tangents to this helix?

♦The lead of a conical helix is sometimes considered as measured along its axis. The 
line segment hx (Fig. 308) is the projection of the lead h measured along the generatrix 
on the axis of the helix. To the division of h into n equal parts there corresponds the 
division of hx into the same number of equal parts, and vice versa.



CHAPTER 8

CURVED SURFACES

Sec. 49. General

1. A surface may be thought of as a common part of two adjacent do
mains of space. In descriptive geometry the surface is defined as the trace 
of a moving line or another surface. The idea of the surface as the totality of 
all consecutive positions of a line moving in space is convenient for graphical 
representations. Of course, when representing a surface, we usually confine 
ourselves to showing this line only in some of its positions.

The idea of generating a surface by continuous motion allows us to term 
such surfaces kinematic.

When depicting a surface, it is more convenient to regard it as a locus 
not of points but of certain lines that satisfy definite conditions. These lines, 
which may be straight or curved, are called generating lines (generatrices). 
To construct the projections of a surface one must know the type of gen
eratrix and also its mode of motion.

The same surface may be generated in a number of ways. For instance, 
the surface of a right circular cone may be generated by the revolution of a 
straight-line generatrix about the axis intersecting it or by the translation 
motion of a constantly deforming circle whose centre moves along the axis 
of the cone, while the plane of the circle is perpendicular to the axis. Of the 
great diversity of methods of generating surfaces, we must select those that 
combine a simple shaped generating line with uncomplicated kinematics.

Thus, a kinematic surface represents a locus of lines moving in space 
according to a certain law.

A surface generated according to such a law is called regular, as distin
guished from irregular surfaces.

2. A surface which can be generated by a straight line is called the ruled 
surface. Hence, the ruled surface represents a locus of straight lines. A sur
face which may be generated only by a curved line will be called the double- 
curved surface.
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Examples of ruled surfaces are given in Fig. 310. The surface depicted 
at the left is generated by a straight line A\A 2 which, remaining all the time 
parallel to SiS2, slides along a fixed curved line T\T2T2 called the directrix.

Obviously, the same surface is generated if the curve T{T2T2 is regarded 
as the generatrix whose points are moving along straight lines parallel to 
the directrix SiS2. Of course, in all its positions the curve must obey the 
conditions of equality and parallelism of curves, and of mutual parallelism 
of the tangents drawn to the curve at one and the same point in the consec
utive positions.

The surface represented to the right is generated by a straight line which, 
remaining all the time parallel to the plane P, slides along two fixed direc
trices: a straight line S \S 2 and a curved line T\T2.

A double-curved surface may be exemplified by a sphere (or rather a 
spherical surface).

3. As it was mentioned in Item 1, one and the same surface may be gener
ated by different lines and according to different conditions to be obeyed 
by the generatrix during its displacement. For instance, the lateral surface of 
a right circular cylinder (Fig. 311) may be considered as a result of a definite 
displacement of the generatrix (a straight line A\A2), or as a result of the 
displacement of a circle whose centre moves along the straight line 0 i 0 2, 
and the plane defined by this circle is perpendicular to 0 i0 2. Let us now 
consider the curve T\T2T2 located on the same cylinder. All of its points are 
equidistant from the cylinder axis 0 i0 2- We may regard the lateral surface 
of this cylinder as generated by the curved line T 1T2T3 revolving about the 
axis 0 1 0 2 -

In general, there is a variety of laws for generating a certain surface. 
It is desirable to select those laws and shapes of the generating lines which 
are most simple and convenient both for representing the required surface 
and solving the problems associated with it. If we imagine the totality of
13-23012
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Fig. 311

rectilinear generatrices and the totality of generating circles (Fig. 311), then 
each line of one totality (of one “family” of lines) will intersect all lines of 
the other totality (of the other “family” of lines). As a result, the network 
of the given surface is obtained. Other surfaces may be thought of in the 
same way.

4. The lateral surface of the cylinder shown in Fig. 311 can be generated 
by displacing a sphere whose centre C moves along the axis 0 \ 0 2. Here we 
have not a generating line but a generating surface (a sphere). The surface 
thus obtained (the lateral surface of the cylinder) envelops the generating 
surface (the sphere) at all its positions, both surfaces contacting each other 
along a circle in each position of the sphere.

If the centre of the sphere moved along a curve, then, of course, we 
would obtain another enveloping surface (see Fig. 349).

Hence, we may regard the generation of a surface as a result of displace
ment of a generating surface which remains unchanged or continuously 
varies according to a certain law during its motion.

5. Some curved surfaces can be developed so that they coincide comple
tely (with all their points) with a plane without stretching or shrinking. In 
this case each point on the development corresponds to a single point of a 
surface; straight lines belonging to a surface remain straight; line segments 
preserve their lengths; an angle formed by lines on a surface remains equal 
to an angle between the corresponding lines on the development; the area of 
a closed domain on a surface retains its magnitude within the corresponding 
closed domain on the development*.

Such surfaces will be called developable. They comprise only ruled surfaces 
in which adjacent rectilinear generatrices are parallel or intersect, or are 
tangent to sphere curve.

All double-curved surfaces and the ruled surfaces which cannot be devel
oped into a plane are called nondevelopable (or warped) surfaces.

♦The angle between two intersecting curved lines is defined as the angle between the 
tangents to these lines at the point o f their intersection.



CH. 8. CURVED SURFACES 195

Sec. 50. A Review of Some Curved Surfaces,
Their Specification and Representation in Drawings

To specify a surface in a drawing means to indicate the conditions en
abling us to construct each point of this surface. For a surface to be specified, 
it is sufficient to have the projections of its directrix and adequate informa
tion on the method for constructing the generatrix passing through any point 
of the directrix**. But if it is desirable to make the representation more 
obvious and expressive, then it is advisable to draw also the outline of the 
surface, several positions of the generatrix, most important lines and points 
on the surface, etc.

A. Developable Ruled Surfaces
1. Cylindrical and Conical Surfaces. A cylindrical surface is generated 

by a straight line which is parallel in all its positions to a given straight line 
and passes in succession through all points of a curved directing line (see 
Fig. 310, left).

A conical surface is generated by a straight line passing through a fixed 
point and through all the points (in succession) of a curved directing line 
(Fig. 312). The fixed point S  is called the vertex of a conical surface. If this 
point is removed to infinity, then a conical surface turns into cylindrical.

Cylindrical and conical surfaces may intersect a plane of projection. The 
line thus obtained is called the trace o f a surface on a given plane of pro
jection.

Figure 313 represents a cylindrical surface (left) specified by a curved 
directrix A\B±C\ and the direction ST  for the generatrix, and a conical sur
face (right) specified by a curved directrix K 1M 1N 1 and the vertex S. In both 
cases constructed on the H  plane are the traces of the surfaces, i.e. the lines 
passing through the horizontal traces of the generating elements of the given 
surface (the curves a'b'c\ abc and k'm'n'9 kmri).

A cylindrical surface may be specified by its trace on the H  plane and 
the direction of its generatrix, a conical surface by its trace on the H plane 
and its vertex. Taking a point on the trace, we can construct the corre
sponding element of the surface.

To construct the contour of a cylindrical or a conical surface, “boundary 
elements” should be marked on either plane of projection which contain 
the domain enclosing the projection of the surface. For instance, marked 
in the left-hand drawing of Fig. 314 on the trace of a cylindrical surface are 
the points through which the projections of the boundary elements pass: 
a\ a and b\ b for the vertical projection; c', c and d \ d for the horizontal 
projection. These boundaries, together with the break lines, determine the 
contours of the projections and separate the surface into visible and in-

*The directrix is often specified by the line of intersection of a given surface with 
the H  plane.

13*
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Fig. 312

visible parts in the projections for which purpose continuous and dashed 
lines are used in Fig. 314.

An analogous construction is given in the right-hand drawing of the same 
figure for a conical surface. In this case both projections of the element SB 
appear to be boundary: one for the vertical projection, the other for the 
horizontal projection of the cone.

As it was mentioned at the beginning of this section, points on cylindrical 
and vertical surfaces can be constructed with the aid of the elements passing 
through them. In some cases, when formulating the task, it is necessary to 
indicate whether the required element is visible or invisible*.

Figure 314 (left) shows the construction of the horizontal projection of 
a point E  belonging to a cylindrical surface and specified by the vertical

♦This information is sometimes given by putting the corresponding projection in 
brackets. For instance, (e') means that point E  is located on that part o f the surface which 
is regarded as invisible on the V  plane.
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projection e'; by hypothesis, the point E  is invisible on the V plane. The 
right-hand drawing gives an example of constructing the vertical projection 
of a point F belonging to a conical surface and specified by the horizontal 
projection / ,  on condition that this point is visible on the plane H. In both 
cases the construction is carried out with the aid of a corresponding element 
and explained by arrows.

If the generating curve (situated in space or representing the trace of a 
surface on a projection plane) is replaced by a polygonal line inscribed in it, 
then a cylindrical surface is substituted by prismatic, and a conical surface by 
pyramidal (i.e. by the faces of a polyhedral angle). This interconnection 
between these surfaces will be used in further constructions (for instance, 
when developing cylindrical and conical surfaces—see Sec. 68).

Cylindrical surfaces differ in the form of normal sections, i.e. in the shape 
of a curved line obtained as the intersection of this surface with a plane 
perpendicular to its elements.

Let us single out the cases when a normal section of a cylindrical surface 
represents a curve of the second order*. Such a cylindrical surface belongs to 
second-order surfaces. Points of any surface of the second order satisfy a 
second-degree equation in Cartesian coordinates in space. Any plane cuts 
such a surface in a second-order curve**. A straight line pierces a second-order 
surface always at two points.

According to the shape of a normal section a second-order cylinder may 
be elliptic (in a particular case—circular), parabolic, or hyperbolic. The lateral 
surface of a right circular cylinder known from three-dimensional geometry is 
a second-order surface. A sphere can be inscribed only in a circular cylinder.

*For second-order curves see Sec. 21.
**For the cases of intersection alongt straight lines see below.
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If the normal section is an indefinite geometric line, then it is a cylinder 
of the general form.

A conical surface intersected along a second-order curve is a surface of 
the second order (a cone o f the second order).

Through the vertex of a right circular cone we can pass an infinite number 
of planes of symmetry of this cone which intersect along a straight line repre
senting the axis of the cone. A sphere can be inscribed in such a cone. The 
lateral surface of a right circular cone is a surface of the second order.

Of course, the axis of a circular cone may occupy any position with 
respect to the projection planes which can be reduced to a simplest one 
(for instance, perpendicular to the H  plane).

Figure 315 (left) represents a cone having a system of similar and similarly 
arranged ellipses* (in the given example they lie in planes parallel to the 
H  plane). Such a cone is called elliptic. It goes without saying that it is cut 
(as any cone of the second order) by planes not passing through its vertex 
in circles, ellipses, parabolas, and hyperbolas, and each of these curves may 
be taken for the directrix. Therefore, the term ‘elliptic’ should not be under
stood as an indication that just an ellipse should be preferably chosen as the 
directrix.

An elliptic cone may be regarded as a right circular cone transformed by 
compressing it in the plane of axial section. For circular sections of such a 
cone see Sec. 63.

The base of the cone shown in the right-hand drawing of Fig. 315 is also 
a circle but the projection of its vertex on the plane of the base does not coin
cide with the centre of the circle. This is an oblique circular cone. Intersecting 
its lateral surface by planes parallel to the plane of the base, we get a number 
of circles whose centres are located on the straight line passing through the 
vertex and the centre of the base of the cone (the line SC in Fig. 315).

♦Ellipses with proportional and respectively parallel axes (so-called homothetic 
ellipses).
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2. The surface called a surface with a cuspidal edge* is generated by a 
rectilinear generatrix performing continuous motion and touching a space 
curve at all its positions. This space curve serves as the directrix for the 
surface under consideration and is called the cuspidal edge.

Such a surface is shown in Fig. 316; its elements A\A \, A 2A 2, etc. are 
tangent to a space curve MN. The cuspidal edge separates the generated 
surface into two sheets (according to the division of each tangent into two 
parts at the point of tangency).

Obviously, by specifying the projections of the cuspidal edge, we can 
specify a surface in the drawing. For instance, taking a cylindrical helix 
(see Sec. 48) as a cuspidal edge and drawing a number of tangents to it, 
we thus specify a surface. If the axis of a helix is arranged perpendicular to 
the H  plane, then the surface thus formed will represent a surface of con
stant slope (with respect to the H  plane), since all the tangents to the helix 
cut the H  plane at one and the same angle (see Sec. 48). The drawing of such 
a surface (of one of its sheet) is given in Fig. 317, where to the arc ABC of a 
cylindrical helix several tangents are drawn. This is done with the aid of an 
involute a l02o3o4o as a locus of horizontal traces of the tangents (see Fig.

♦This surface is also called the torse, the latter term meaning also a developable 
surface.
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306). The constructed element of the surface faces the viewer with its convex 
side. The same drawing shows how the projection k f of a point K  belonging 
to a given surface is constructed from a given projection k : drawing through 
the point k a tangent to the semi-circle abc and using points 40 and 4, we 
find their vertical projections 4'0 and 4 \  and thus the projection of the tan
gent on which the point K  is situated. The line of recall drawn from k deter
mines the required projection k!.

If the vertical projection of a point belonging to a given surface is given 
and it is required to find its horizontal projection, then we have to pass a 
plane at the level of the given vertical projection of the point to intersect 
the surface (for the intersection of a surface by a plane see Sec. 55 et ah). 
The required horizontal projection of the point must belong to the hori
zontal projection of the line yielded by the section. In this case it is advisable 
to use a horizontal plane which will cut the surface in question along an 
involute.

A cylindrical and a conical surfaces may be regarded as produced from 
a surface with a cuspidal edge on condition that the cuspidal edge repre
sents a point: (1) at infinity for a cylindrical surface, and (2) at a finite dis
tance for a conical surface.

If the directrix is a plane curve, then the surface defined by the tangents 
to such a curve represents a plane.

If a surface with a cuspidal edge is cut by a plane not passing through its 
element, then we obtain a curve with a cusp (see Item 1) lying on the cuspidal 
edge. Hence the term ‘the cuspidal edge9.

B. Nondevelopable Ruled Surfaces*

1. Surfaces with a Plane Director. 1.1. Cylindroids and conoids. The surface 
called a cylindroid is generated by a moving straight line which in all its 
positions remains parallel to a given plane (called “the plane director”) 
and intersects two curved lines (two directrices). If the directrices are plane 
curves, then, of course, they must lie in different planes.

Figure 318 shows a cylindroid generated by a straight line AD moving 
along directrices ABC and DEF parallel to the plane director P (which is in 
the present case a horizontal projecting plane). As is obvious, to construct 
the drawing, the following should be given: the projections of the directrices 
and the position of the plane director.

The surface of a conoid is generated by a moving straight line which all 
the time remains parallel to a given plane (called the plane director) and inter
sects two directrices one of which is a curve, the other being a straight line. 
If the curve is a plane one, then it must not lie in one and the same plane 
with the second directrix which is a straight line.

♦Also called ‘warped surfaces’.
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A conoid is shown in Fig. 319. Here the plane H  is taken for a plane 
director, and the rectilinear generatrix intersects both the curve AFB and 
the straight line CD which is in this case perpendicular to the H plane*.

Any plane parallel to the plane director intersects a cylindroid and conoid 
along a straight line. Hence, if it is required to construct an element of a 
cylindroid or a conoid it is necessary to pass a specified plane parallel to the 
plane director, to find the points of intersection of the directrices of the sur
face with this plane, and draw a straight line (the required generatrix) 
through these points. In the particular case shown in Fig. 319, to construct 
the element of the conoid passing through the point E on the straight-line

♦Conoids may be exemplified by the surfaces SACDS and SBCDS represented in 
Fig. 265 which, together with the triangles ASB  and ABC, bound the solid shown.
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directrix, we can do without an auxiliary secant plane, since the vertical 
projection of the generatrix must be parallel to the x-axis. It is sufficient to 
draw e 'f ' parallel to the x-axis, to find the point /  (using the point /  ') 
and then the horizontal projection ef.

The right-hand drawing of Fig. 318 shows how to find the projection k! 
of a point K  belonging to the cylindroid if the projection k is given. Through 
k  a plane (it is not shown in the drawing) is passed parallel to the plane di
rector P. The intersection yields a straight line with the projections 1-2, 
1'2' and the projection k ' on 1'2\

If the vertical projection of a point belonging to a cylindroid is given, 
and it is required to find its horizontal projection, then proceed as follows: 
pass a plane cutting the cylindroid and containing the given point. For 
instance, the cylindroid represented in Fig. 318 should be cut by a horizontal 
plane at the level of the given vertical projection of the point. Then we con
struct the horizontal projection of the line of intersection and on it the 
required horizontal projection of the point.

On a conoid the projections of a point are constructed in a similar way.
1.2. Hyperbolic paraboloid {a warped plane). Figure 320 illustrates a sur

face called the warped plane or hyperbolic paraboloid, which is also called the 
ruled paraboloid. The surface of a hyperbolic paraboloid is determined by 
a plane director and two noncoplanar (skew) straight-line directrices. 
A straight-line generatrix moving along the directrices (and remaining 
parallel to the plane director) describes the surface of a hyperbolic paraboloid. 
In Figure 320 the plane director is the H  plane, the straight lines AJB and CD 
being the directrices.

The same figure shows the construction of the projection k9 using the 
given vertical projection k' of a point belonging to a warped plane. The 
construction is simple and is reduced to drawing the vertical projection 
m’ri of the generatrix at the level of the point k' in accordance with the given 
plane director.

If the horizontal projection k is given, then, to find the vertical projec
tion k \  we have to pass a secant plane so that it passes in space through the 
point K, i.e. to proceed in the way described for a surface with a cuspidal 
curve.

It is proved in analytic geometry that a hyperbolic paraboloid can also 
be obtained as a result of such a motion of the parabola BOBi (Fig. 321) 
during which its axis of symmetry remains parallel to the z-axis, its vertex 
displaces along the parabola AOAi, and the plane containing the parabola 
BOBi remains parallel to the plane xOz. A plane parallel to the plane xOy 
cuts the hyperbolic paraboloid in a hyperbola (if such a plane passes through 
the vertex O then the hyperbolic paraboloid is intersected along two straight 
lines passing through the point O). Planes parallel to the planes xOz and 
yOz intersect the hyperbolic paraboloid in parabolas. Hence, the name of the 
surface—a “hyperbolic paraboloid”.

Figure 322 demonstrates a warped plane generated by a straight-line 
generatrix AB moving along skew lines AD and BC contained in mutually
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d
Fig. 320

Fig. 322
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parallel planes; the plane director is P. Obviously, the same surface is ob
tained if a straight line AD taken as the generatrix displaces along the direc
trices AB and CD parallel to the plane Pi. Hence it follows that through any 
point of the warped plane it is possible to draw two straight lines belonging 
to this plane.

Figure 322 shows a parabola corresponding to the parabola AOA± rep
resented in Fig. 321. Furthermore, the parabola obtained as the curve of 
intersection of the warped plane with a profile plane passing through the 
points B and D (parabola BOB± in Fig. 321) is constructed in the same way. 
To construct the hyperbola along which the warped plane is cut by the H 
plane, we have to find the horizontal traces of the generating elements as it is 
done in Fig. 322 for some of them.

Thus, for the above considered surfaces, i.e.for the cy I indroid, conoid, and 
warped plane (hyperbolic paraboloid), the generatrix is a straight line which 
must simultaneously intersect two directrices and remain all the time parallel to 
some plane, and the relative positions of the directrices and plane director must 
be unchanged.

2. Surfaces with Three Directrices. 2.1. Hyperboloid of one sheet. This is 
the name for a surface generated by a moving straight line which intersects 
all the time three skew lines (directrices)*.

If a point A i (Fig. 323) is taken on one of the three given skew lines 
(say, on line /), and planes Q and P  are passed through this point and the 
remaining two lines (lines II  and III), then the planes will intersect along 
a straight line passing through the point Ai and intersecting line II  at point 
K<l, and line / / /a t  point K3. If all the points of line /  are taken as initial points 
and for each of them such straight lines as A\K 2, . . . ,  are constructed in the 
above fashion, then they will generate a surface called the hyperboloid of one 
sheet.

♦If all the directrices are parallel to one and the same plane, then a rectilinear gener
atrix, displacing along these directrices, generates a warped plane.
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Fig. 325

Practically, we take a number of points on line I  and construct the corre
sponding elements. In Figure 323 we could confine ourselves to constructing 
only one plane, say the plane Q containing line II, and find the point of 
intersection K3 of fine III with the plane Q.

In analytical geometry it is proved that the hyperboloid of one sheet can 
be obtained as a result of motion of a deformable ellipse (Fig. 324, left) 
whose plane remains parallel to the plane xOy and the end-points of whose 
axes slide along hyperbolas contained in the planes xOz and yOz. The right- 
hand picture of Fig. 324 shows a hyperboloid of one sheet with rectilinear 
generating elements on its surface. If the ellipse is substituted by a deformable 
circle, then both directing hyperbolas will be equal to each other. In this case 
the obtained surface is called the hyperboloid of revolution of one sheet (see 
Sec. 51).

Through any point on the hyperboloid of one sheet we can draw two 
straight lines belonging to this surface. This was first mentioned for the hyper
bolic paraboloid.

Figure 325 demonstrates a hyperboloid of one sheet specified by three 
skew lines of arbitrary positions. One of these lines is perpendicular to the 
H plane—a position which can be always obtained using, for instance, the 
method of replacing projection planes. The drawing shows the construction 
of the vertical projection k' of a point K  belonging to the hyperboloid of one 
sheet and specified by its horizontal projection k. Drawing a straight line 
through the points a and k , we get the horizontal projection of the generatrix, 
and then, with the aid of the points d and / ,  we construct the projections d' 
and / '  which determine the vertical projections of this generatrix and the 
required point k ' on it.

If we are given not the horizontal but the vertical projection of a point K  
belonging to the hyperboloid of one sheet, and none of the directrices is
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Fig. 326

perpendicular to the V plane, then the hyperboloid should be cut by a plane 
so that the latter passes through the point K, as mentioned above.

2.2. Warped cylinder with three directrices. This surface is generated by a 
straight line displacing along three directrices of which at least one is a curved 
line (see Sec. 63).

If the directrices are skew lines, then a hyperboloid of one sheet is ob
tained (see Item 2.1). We may come across a case when one of the directrices is 
a plane curve. Then it must not be coplanar with either of the two skew 
lines (the remaining directrices). If a surface is generated by two curved and 
one straight lines, then such a cylinder is called the conusoid. An example is 
given in Fig. 326, where it is specified by two curves located in profile planes 
and a straight line AB perpendicular to the H  plane. The horizontal pro
jections of the generatrices pass through the point a(b), their vertical pro
jections intersecting the projections a'b' at different points. To construct the 
vertical and profile projections of a point K belonging to the conusoid and 
specified by the horizontal projection k , proceed as follows: draw a straight 
line through the points a and k  to get the horizontal projection of the generat
ing element, construct the remaining projections of this element and the pro
jections k ' and k” on them. If, for instance, the vertical projection k' is given 
and it is required to find the horizontal projection k , then take advantage 
of the method described under the heading A.

Warped cylinders with three directrices are widely used in engineering 
(in designing rowing screws, propellers, automobile bodies, etc.).

Thus, the generatrix o f the hyperboloid of one sheet and a warped cylinder 
with three directrices is a straight line which9 while moving, simultaneously 
intersects three fixed directrices.
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C. Double-curved Surfaces

1. Double-curved Surfaces of the Second Order. Considered above were 
ruled surfaces of the second order: the cylinder, cone, hyperbolic paraboloid 
and hyperboloid of one sheet. Now we are going to study the remaining 
surfaces of the second order which are double-curved surfaces: the ellipsoid, 
elliptic paraboloid, and hyperboloid of two sheets.

1.1. The ellipsoid. This surface is generated by a moving variable ellipse 
ACBD (Fig. 327) whose plane remains parallel to the plane xOy9 and the 
end-points of whose axes slide along the ellipses AEBF and CEDE. If the 
diameters AB, CZ>, and EF of this ellipsoid are of different lengths, then it is 
said to be triaxial9 if two of them are equal to each other but not equal to the 
third one, then we obtain a contracted or prolate ellipsoid of revolution (see 
Sec. 51). And, finally, if AB =  CD = EF, then we get a sphere. Any plane 
cuts the ellipsoid in an ellipse, in particular cases—in a circle.

1.2. The elliptic paraboloid. An elliptic paraboloid can be obtained as a 
result of displacement of a variable ellipse ABCD (Fig. 328) whose plane 
remains parallel to the plane xOy and the end-points of whose axes slide 
along parabolas AOB and COD. Its intersections with planes are only e- 
llipses (in some particular cases—circles) and parabolas, the latter being ob
tained when secant planes are parallel to its axis. If the ellipse ABCD is 
substituted by a variable circle, then both parabolas {AOB and DOC) will 
be equal to each other. In this case the surface obtained will be called a 
circular paraboloid or paraboloid o f revolution (see Sec. 51).

1.3. The hyperboloid of two sheets. The surface of this hyperboloid con
sists of two sheets (Fig. 329) spreading to infinity. Either of the sheets can 
be obtained as a result of displacement of a variable ellipse (.AiC\B\Di or 
A 2C2B2D2) whose plane remains perpendicular to the axis O1O2 of the sur
face, and the end-points of whose axes slide along two hyperbolas. If the 
ellipse is substituted by a variable circle, then both hyperbolas will be equal 
to each other {A1O1B 1 =  C1O1D1). In this case the surface is called the 
hyperboloid of revolution of two sheets (see Sec. 51).

Sections by various planes are ellipses (in particular cases—circles), 
hyperbolas, and parabolas.

2. Cyclic Second-order Surfaces. A cyclic surface is generated by a circle 
of a variable radius whose centre moves along a curve. Let us consider the 
case when the plane of the generating circle remains perpendicular to the 
given curved-line directrix along which the centre of the circle displaces. 
The surface thus generated is said to be a canal surface. It may also be 
thought of as an enveloping surface for a family of variable spheres whose 
centres are situated on a directing curve. The radius of a generating circle or 
a generating sphere may be constant. The surface generated by such circle 
moving along a directing curve or by enveloping all consecutive positions 
of the generating sphere with the centre moving in the same manner is called 
a tubular surface. In engineering it may be exemplified by equalizers in 
pipe-lines.
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Fig. 327

A cylindrical helix may be used as a directrix for generating a tubular 
surface. In this case we have a tubular helical surface. An example is given 
in Fig. 349: the surface of a wire of a circular cross-section coiled on a pipe. 
Another example is the surface of a coiled cylindrical spring with a circular 
cross-section of coils.

Cyclic surfaces of various shapes are widely used in gas pipings, hydro
turbines, centrifugal pumps, etc.

If a straight line but not a curve is taken as a directrix, then a canal sur
face turns into a surface of revolution (see the next section), into a conical 
surface in particular, while a tubular surface turns into the surface of a 
cylinder of revolution under the same condition.
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D. Surfaces Specified by a Network
These are surfaces specified by a number of lines belonging to such a 

surface. In a particular case we can imagine one group of certain plane curves 
each contained in parallel planes, and another group of lines intersecting 
the lines belonging to the first group thus forming a network of a surface.

A surface specified by a framework cannot be considered as quite de
finite, since there may be surfaces with one and the same network but still 
differ from one another.

Network surfaces may be exemplified by the surfaces of hulls, airplanes, 
and automobiles.

E. Graphical Surfaces
Any surface may be specified graphically*. For many surfaces the gen

erating and directing lines (generatrices and directrices) are geometrically 
defined, and the surfaces are generated according to certain laws. On the 
other hand, there are surfaces for which such conditions are not stipulated. 
In the latter case surfaces are specified only graphically with the aid of a 
number of lines which must (according to designer’s project) belong to such 
a surface or be detected on an existing surface. Such surfaces are called 
graphical.

This group of surfaces comprise also a so-called topographical surface,
i.e. Earth’s surface from the point of view of its representation. Its relief is 
usually represented by contour lines obtained as sections of this surface by 
horizontal planes.

QUESTIONS TO SECS. 49-50

1. What is the surface?
2. How is a kinematic surface generated?
3. What is the generatrix (generating line)?
4. What is the difference between a ruled and a double-curved surfaces?
5. Can a surface be generated not by a line but by a surface?
6. What is the directrix?
7. What surfaces belong to double-curved (nondevelopable) surfaces?
8. What is meant by “to specify a surface in the drawing”?
9. How are a cylindrical and a conical surfaces, a surface with a cuspidal 

edge generated and how are they specified in drawings?
10. What is a second-order surface and in what lines is such a surface 

cut by planes?

♦That is by drawing; from the Greek ‘grapho’ meaning ‘I write’.

14-23012
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11. How are cylindrical surfaces distinguished?
12. What cone is called elliptic? What is an oblique circular cone?
13. How is a surface with a cuspidal edge specified in the drawing? How 

else is this surface called?
14. How are surfaces with a plane director generated?
15. What lines are the directrices of a cylindroid and a conoid?
16. How is a warped plane (a hyperbolic paraboloid) generated?
17. In what lines is a hyperbolic paraboloid cut by planes parallel to the 

planes of coordinates?
18. How many straight lines belonging to a hyperbolic paraboloid can be 

drawn at any of its points?
19. How is a hyperboloid of one sheet generated?
20. How many straight lines belonging to a hyperboloid of one sheet 

can be drawn at any of its points?
21. How is a warped cylinder with three directrices generated?
22. In what case is a warped cylinder with three directrices called the 

conusoid?
23. List the ruled and double-curved surfaces of the second order.
24. May a sphere be interpreted as an ellipsoid and in what case?
25. In what curved lines is an ellipsoid cut by planes?
26. What is an elliptic paraboloid?
27. What are the plane sections of an ellipsoid?
28. What are the plane sections of a hyperboloid of two sheets?
29. What surfaces are called ‘cyclic’?

Sec. 51. Surfaces of Revolution

A surface of revolution is generated by the revolution of a curved-line 
or straight-line generatrix about a fixed straight line called the axis of the 
surface.

A surface of revolution can be specified by the generatrix and the posi
tion of the axis. Such a surface is shown in Fig. 330 where the generatrix is 
a curved line ABC, and the axis is a straight line 0 0 1 which is coplanar 
with the curve ABC. Each point of the generatrix describes a circle. Hence, 
a plane normal to the axis of the surface of revolution cuts this surface in 
circles. Such circles are called parallels. The greatest parallel is called the 
equator, the smallest parallel the throat of a surface*.

A plane passing through the axis of a surface of revolution is termed a 
meridian plane. The line along which a meridian plane intersects a surface 
of revolution is called the meridiem of the surface.

*A surface of revolution may have several equators and throats.
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Fig. 330

The point of intersection of a meridian of a surface with its axis may be 
called the vertex of this surface provided they do not intersect at right angles.

If the axis of a surface of revolution is parallel to the V plane, then the 
meridian contained in the plane parallel to the V plane is termed the principal 
meridian. In such a position the principal meridian is projected on the V 
plane without twisting. If the axis of a surface of revolution is perpendicular 
to the H  plane, then the horizontal projection of the surface is a circle.

In drawings, the axis of a surface of revolution is ordinarily made per
pendicular to one of the projection planes (H, F, or W).

Some surfaces of revolution represent particular cases of the surfaces 
considered in the preceding section. These are: (1) a cylinder of revolution, 
(2) a cone of revolution, (3) a hyperboloid of revolution of one sheet, (4) an 
ellipsoid of revolution, (5) a paraboloid of revolution, and (6) a hyperboloid 
of revolution of two sheets.

For the cylinder and cone of revolution meridians are straight lines parallel 
to the axis and equidistant from it in the first case, and intersecting the axis 
at one and the same point at one and the same angle to the axis in the second 
case. Since the cylinder and cone of revolution are surfaces spreading to 
infinity in the direction of their generatrices, their representations are usually 
bounded by some lines, for instance, by the traces of these surfaces on the 
projection planes or by one of the parallels. A right circular cylinder and a 
right circular cone known from solid geometry are bounded by a surface 
of revolution and planes perpendicular to its axis. The meridians of such a 
cylinder are rectangles, and those of the cone are triangles.

For the hyperboloid o f revolution the meridian is a hyperbola. If the hyper
bola is revolved about its real axis, then a hyperboloid of revolution of two
14*
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Fig . 331

sheets is generated; if it is revolved about its imaginary axis, then we have a 
hyperboloid of revolution of one sheet.

A hyperboloid of revolution of one sheet can also be generated by the 
revolution of a straight line if the generatrix and the axis o f revolution are 
skew lines. Figure 331 shows a hyperboloid of revolution of one sheet gener
ated by revolving a straight line AB about the indicated axis and bounded 
by two parallels. The circle described from centre 0 3 is the throat of the 
surface.

On a hyperboloid of revolution of one sheet it is possible to draw rectilin
ear elements in two directions: in the way shown in Fig. 331 and inclined 
to the other side at the same angle to the axis.

Besides straight lines, this surface can also be cut in hyperbolas (by planes 
passing through its axis) and circles (by planes perpendicular to the axis).

The right-hand drawing of Fig. 331 illustrates the construction of the 
vertical projection of a hyperboloid of revolution of one sheet by its axis 
and generatrix. First of all the radius of the throat is found. To this end a 
perpendicular o\l to the horizontal projection of the generating element 
AB is drawn. This determines the horizontal projection of a common per
pendicular to the axis and to the generatrix. The true length of the line seg
ment represented by the projections o^V and oxl  is equal to the radius of 
the throat of the surface. Then, using the method of revolution, the points 
represented by the projections 2', 2; 3', 3; a \ a are brought to the plane P 
which is parallel to the V plane. This enables us to draw the outline of the 
vertical projection of the hyperboloid. Its horizontal projection will be 
represented by three concentric circles.

The meridian o f the paraboloid of revolution is a parabola whose axis serves 
as the axis of the surface.
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The meridian for the ellipsoid of revolution is an ellipse. The surface can 
be generated by revolving an ellipse about its major axis (a prolate ellipsoid 
of revolution is shown in Fig. 332, left) or about its minor axis (an oblate 
ellipsoid of revolution is illustrated in Fig. 332, right). The ellipsoid of revolu
tion is a bounded surface, and therefore it can be represented completely. 
The same refers to the sphere for which the equator and meridians are con
gruent circles.

We emphasize once again that the cylinder, cone, and hyperboloid of one 
sheet are ruled surfaces, i.e. they can be generated by revolving a straight 
line*. In contrast to them, the ellipsoid, paraboloid, and hyperboloid of two 
sheets are generated by revolving not a straight line but an ellipse, parabola, 
and hyperbola, respectively, the axis of revolution being chosen so that the 
generating curve is arranged symmetrically with respect to this axis. The 
same may be said about the hyperboloid of revolution of one sheet if it is 
generated by revolving a hyperbola about its imaginary axis.

Since the axis of revolution is chosen to coincide with the axis of sym
metry of an ellipse, parabola or hyperbola, the ellipse and hyperbola form 
two surfaces each, since either of them has two axes of symmetry, whereas 
the parabola generates only one surface, for it has one axis of symmetry. 
Hence, each of the considered surfaces is generated by revolving the genera
trix only in a single way, the sphere being the only exception. The sphere 
which may be considered as an ellipsoid with equal axes of the generating 
ellipse (circle) can be generated by rotating a circle in many fashions, since 
the circle is symmetrical about any of its diameters.

When revolving a circle (or its arc) about an axis lying in the plane of this 
circle but not passing through its centre, we get a surface called the torus.

♦The regularity in the location of rectilinear generating elements of the hyperboloid 
of revolution of one sheet is used in a design known under the name “Shukhov’s tower”. 
V. G. Shukhov (1853-1939) was an outstanding Russian engineer. “Shukhov’s tower” is 
applied in constructing radio masts, water-towers and other projects.
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Fig. 333

Fig. 334

The solid bounded by this surface is also called the torus (or the anchor 
ring).

Shown in Figure 333 are different shapes of the torus: (1) an open torus 
or annular torus (its axis does not intersect the generating circle), (2) a closed 
torus (its axis is tangent to the generating circle), and (3) a self-intersecting 
torus (its axis intersects the generating circle). All of them are represented 
in the simplest position: the axis of the torus is perpendicular to the H  plane.

An open and a closed tori are generated by a circle, while a self-inter
secting torus by a circular arc. Spheres can be inscribed in an open and closed 
tori. The torus may be regarded as a surface enveloping congruent spheres 
whose centres are located on a circle.

The torus has two systems o f circular sections: (1) by planes perpendicular 
to its axis, and (2) by planes passing through its axis.

The surface called the torus is quite frequently used in machine-building 
and architecture. Figure 334 shows a mechanical part whose surface of 
revolution comprises a self-intersecting and an open tori. The right-hand 
drawing of the same figure represents schematically a curved surface which



CH. 8. CURVED SURFACES 215

is a passage between two cylindrical arches and has the shape of a closed 
torus with the axis 0 0 \.  •

We finish our review of surfaces of revolution with the catenoid*. This 
surface is generated by a complete revolution of a catenary** about its hori
zontal axis lying in the same plane.

The position of a point on a surface o f revolution is determined by a circle 
passing through this point on the surface o f revolution.

But this does not exclude the possibility of using rectilinear generators 
when dealing with ruled surfaces of revolution, as it was shown in Fig. 314 
for cylinders and cones of the general form.

Figure 330 demonstrates the use of a parallel for constructing the pro
jection of a point belonging to a given surface of revolution. If the vertical 
projection m’ is given, then we draw the vertical projection f f [  of the 
parallel, and describe a circle of radius R =  o[f' which is the horizontal 
projection of the parallel, and on it we find the horizontal projection m. 
If we are given the horizontal projection m, then a circle of radius R = om 
should be described, point / '  found with the aid of / ,  and the vertical pro
jection of the parallel f f {  drawn, on which the vertical projection m' 
must be situated. Figure 332 shows the construction of the projections of a 
point K belonging to an ellipsoid of revolution, and Fig. 335 of a point M  
belonging to the surface of an annular ring.

How the projections of a point on a sphere are found is demonstrated 
in the right-hand drawing of Fig. 335. The vertical projection a' of point A is 
constructed from its horizontal projection a; the horizontal projection b 
of point B is found using its vertical projection b'. The point B satisfies an 
additional condition consisting in that it should be invisible on the vertical 
projection.

A point C is given on the equator and therefore its horizontal projection c 
is found on the horizontal projection of the sphere, i.e. on the horizontal 
projection of the equator. Points K  and Mare situated on the principal me
ridian; they belong to the parallels on which the points A and B are located. 
Point D is also on the principal meridian, its horizontal projection being 
invisible.

Let us now consider an example of constructing the projections of points 
belonging to a surface of revolution. Suppose it is required to bring a point A 
to a given surface of revolution by revolving it about a given axis MN  
(Fig. 336, a). Since in this case the axis of the surface of revolution and the 
axis of the revolution of the point A are perpendicular to the H  plane, the 
circle of revolution of the point A is projected on H  without distortion as 
also the parallel of the surface of revolution obtained as the intersection of

♦Catena (Latin)—chain.
♦♦Catenary is the plane curve in which a chain of uniform density will hang when 

suspended from two points.
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Fig. 336
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this surface and the plane of revolution of the point A. This plane also con
tains the centre of revolution of the point A (point O which is the point of 
intersection of the axis of revolution MN  with#the plane of revolution S). 
The rest of the construction is obvious from the drawing. In the position 
A 2 on the surface the point will become invisible on the V plane.

Suppose we consider the choice of the axis of revolution required to 
bring a given point A to a given surface of revolution. In Sec. 38 we came 
across an analogous situation, but there we had to choose an axis to intro
duce a point into a plane by revolving the point about this axis. We estab
lished there that there was a zone within which it was impossible to take 
axes, since, when revolved about such an axis, the point would not touch 
the plane. This zone was determined by a parabolic cylinder, and a parabola 
appeared when considering the relative positions of the point revolved and 
the straight line on which this point had to appear after getting into contact 
with the plane.

Obviously, now the question is to be answered when considering the 
relative positions of the point A and a circle (parallel) on the surface of a 
solid of revolution.

It follows from Fig. 336, a that the projection o of the centre of revolution 
must be located so that Ra is not less than the distance of the point o from 
the nearest point on the projection of a circle of radius r. But if we take 
a point o equidistant from a and from the projection of this circle (for 
example, o\ or 0 2 —see Fig. 336, b), then the axis may be erected at this 
point, since the circle of revolution of the point A will touch the circle of 
radius r, i.e. the point A will turn out to be in contact with the surface of 
revolution.

Where do all the points equidistant from the point a and from the circle 
of radius r lie in the drawing? They are located on a hyperbola (Fig. 336, b) 
for which the point a serves as one of the foci, and for instance point ou 
at which the line segment al is bisected, as one of the vertices. To obtain 
the second vertex of the hyperbola (point 03), we bisect the line segment a3. 
The second focus will be situated at point c, i.e. in the centre of the circle 
yielded by the intersection of the surface of the solid of revolution and the 
plane S  (Fig. 336, a).

It follows from the above reasoning that any of the points on both 
branches of the hyperbola and between them may be chosen as the hori
zontal projection of the axis of revolution.

We may come across a case when the point is located inside a surface 
of revolution. Hence, passing through the point a plane of rotation, we get 
the horizontal projection a inside the projection of the circle of radius r 
in which the plane of revolution of the point A cuts the surface of revolution 
(Fig. 336, c). Obviously, this time again, Ra must not be less than the dis
tance of the point o (i.e. the projection of the axis) from the nearest point 
of the projection of the circle of radius r. The limiting positions of the axes 
will now be located as the points of an ellipse with the foci at points a and c 
with the major axis on a straight line 1-3, and with the vertices at points
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o\ and 0 3 . The projection of the axis should not be taken inside this ellipse, 
since such an axis will not enable us to bring the point A onto the surface 
of revolution.

Thus the question how to choose the axis of revolution so that, revolv
ing a point about it, to bring this point onto a plane or a surface of 
revolution whose axis is parallel to the axis of revolution, has led us to an 
ellipse (Fig. 336, c), parabola (Fig. 244), and hyperbola (Fig. 336, b) as the 
lod of the centres of revolution.

When solving various problems certain surfaces are used as geometrical 
loci of points and lines meeting definite conditions. For instance, given a 
plane P and a point K  outside this plane, determine how the points situated 
at a given distance r from the point K  will be located in the plane P (r is 
greater than the distance of the point K  from the plane P). In this case the 
solution calls for the use of a sphere as the locus of points situated at a 
distance r from the point K. The plane P will cut this sphere in a circle which 
yields the solution for our problem*.

If it is required to construct in the plane P points situated at a distance r 
not from a point but from a certain straight line AB not lying in the plane P, 
then the locus of such points in space will be the surface of a cylinder of 
revolution with the axis AB and radius r, and the required points in the 
plane P will be obtained on the line of intersection of this cylinder with the 
plane P.

Figure 368 (right) and Figure 401 give examples of using conical sur
faces of revolution as the loci of straight lines passing through a given point.

If we are interested in the points equidistant from a given plane Q and 
n given point Af, then a paraboloid of revolution with the focus of the pa
rabola at the point M  should be used as the locus of such points in space.

Of course, the use of various surfaces as geometrical loci is not exhausted 
by the above examples.

QUESTIONS TO SEC. 51

1. What is called the surface of revolution?
2. How can we specify a surface of revolution?
3. How do we define parallels and meridians on a surface of revolution? 

How are the equator, throat, and the principal meridian defined?
4. Which axis of a hyperbola serves as the axis of revolution for generat

ing a hyperboloid of revolution of (1) one sheet, (2) two sheets.
5. Can a hyperboloid of revolution of one sheet be generated by a straight 

line?

♦The reader is invited to make the drawing and to solve this and subsequent problems.
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6. What surfaces of revolution are ruled surfaces?
7. How is the torus generated? #
8. When is the torus called an annular ring?
9. How many systems of circular sections has the torus ?
10. How is the position of a point determined on a surface of revolution ?

Sec. 52. Helical Surfaces and Screws

Figure 337 represents one turn of a helical surface generated by a moving 
line segment AB. The straight line defined by the given segment intersects 
the axis in all positions at one and the same angle (in Fig. 337 this angle is 
equal to 60°). The displacement of the end-points of the line segment along 
the axis is proportional to the angular displacement of the line seg
ment.

The points A and B, like all the other points of the segment AB, generate 
cylindrical helices, and, hence, to get a more exact representation of the 
outline of the helical surface on the V plane we have to construct as many 
as possible projections of helices generated by different points of the seg
ment AB, and then to draw the curves enveloping these projections. Prac
tically, instead of this cumbersome construction, straight lines are usually 
drawn simultaneously tangent to the projections of the helices (see Fig. 345).

If the generatrix is inclined with respect to the cylinder axis at an angle 
other than 90° (for instance, 60° as in Fig. 337), then the helical surface is 
called oblique. If this angle is equal to 90°, then a right helical surface is 
formed (see Fig. 338).

According to the way of generation the surface shown in Fig. 338 is a 
conoid. Indeed, the generatrix is a straight line which in all its positions 
remains parallel to a certain plane (in the present case it is perpendicular to 
the cylinder axis). The generatrix intersects two directrices—a curve and a 
straight line (the cylinder axis). Since the curved directrix represents a helix, 
such conoid is called helical, or a right helicoid.

In Figure 338 a helical conoid is shown together with a circular cylinder. 
Since they are coaxial, on the surface of the cylinder a cylindrical helix is 
formed whose lead is equal to the lead of the directing helix. The surface 
bounded by these helices is called an annular helical conoid.

An oblique helical surface represented in Fig. 337 is also called an oblique 
helicoid. The leading feature of this surface is that a rectilinear generatrix in 
all its positions intersects two directrices: a cylindrical helix and a straight 
line (the axis of the surface), and the generatrix intersects the axis at a con
stant angle which is not equal to 90°. In all its positions the generatrix is 
parallel to the generating elements of a cone of revolution whose axis coincides 
with the axis of the helix (Fig. 339, left). If, for instance, it is required to ob
tain the vertical projection of the generating element of an oblique helicoid 
passing through a point C, then it is advisable to begin with drawing the 
horizontal projection of this element, i.e. to draw the radius sc, to find the
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point c[ with the aid of the point c\ and the vertical projection of the element 
SC\ of the cone, and then to draw c'd' parallel to s'c[.

The right-hand drawing of Fig. 339 represents a helix generated by a 
moving line segment tangent to the surface of a cylinder. The construction 
is again reduced to finding the projections of helices formed by two points: 
the end-point A of the line segment and the point of tangency B. The seg
ment may be directed either at a right angle (as it is taken in Fig. 339), or at 
an acute angle with respect to the axis.

The surface shown in Fig. 339 (right) is a cylindroid (see Fig. 50, b). 
Indeed, in all its positions the generatrix remains parallel to a plane and 
slides along two directrices which are space curves; the plane director is 
perpendicular to the cylinder axis; the generatrix touches the surface of the 
cylinder (the points of tangency form a cylindrical helix), and at the same time 
intersects the directing helix which is coaxial with the cylinder. The surface 
represented in Fig. 339 (right) is termed the helical (or screw) cylindroid. 
If the generatrix of such surface forming skew lines with the cylinder axis, 
makes with this axis an angle not equal to 90°, then the obtained surface 
does not belong to cylindroids; it is named an oblique annular helicoid.

The above considered helical (or screw) surfaces belong to double-
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curved surfaces. But there is a screw surface which is regarded as a de
velopable, namely, a surface with a cuspidal edge, the latter being a cylindrical 
helix (see Fig. 317). This screw surface is called an open helicoid.

Figure 340 shows the surface of an oblique helicoid intersected with a 
plane T  which is perpendicular to the axis of this surface. The curve obtained 
in the section is represented on the H  plane without distortion, since the 
plane T  is parallel to H. This curve is a spiral of Archimedes.

The construction of this curve is reduced to the following: on dividing 
the angle ciqCqCz (180°) into several (in our case into six) equal parts, we divide 
the line segment c0ce into the same number of equal parts. Then on the
radius Co#i from the point c0 we lay off c0c\ = -, on the radius CqO2

we lay off c0c2 = 2cqCi, etc.
Now we shall dwell on the construction of points belonging to a right 

and an oblique helical surfaces. For a right helical surface this is shown in 
Fig. 338. Let the point A belonging to the surface is specified by its hori
zontal projection a. To find the vertical projection a\ we have to draw the 
horizontal projection of the element on which the point A must be situated,
i.e. to draw the radius cb through the projection a. Using the point b9 we 
then find the point b' and draw the vertical projection of this element coin
ciding with the straight line c'b' . On this line we find the projection a'*.

*If the helical surface is opaque, the point A is invisible with respect to the V plane.
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If the projection a! is given and it 
is required to find a, then, through a’ 
we first draw a straight line perpendicu
lar to the axis of the helix to intersect 
the projection of the helix at point b\ 
With the aid of this point, we find the 
point h, and on the radius cb—the 
point a.

The accuracy of construction here 
depends on the exactness of drawing 
the sinusoid (the vertical projection of 
the helix), since the point b' is located 
on it.

In the case of an oblique helical sur
face (Fig. 339, left), if the horizontal 
projection m is given and it is required 
to find the vertical projection m \ then 
we draw the radius se through the 
point m, find the points e' and e'x with 
the aid of the points e and el9 draw the 
horizontal projection s'e[ of the element 
of the cone and parallel to it through 
the point e' the vertical projection of 
the generating element of the helical 
surface. On this projection we obtain 
the projection m \

If the vertical projection m' is given 
and it is required to find the horizontal 
projection m, then we had to construct 
the curve (spiral of Archimedes) of in
tersection of the oblique helical surface 
and the plane passed at the level of 
the point m' perpendicular to the axis 
of the surface, and find the point m on 
the spiral.

The helical surfaces shown in Figs. 
337-340 cannot be developed, or rolled 
out, on a plane without stretching or 
shrinking. For a right helical surface 
represented in Fig. 338, we can get an 
approximate development of each of its 
separate turns as it is shown in Fig. 341. 
The development of one turn may be 
represented (approximately) as a part 
of an annulus.

To construct this part of the annu-
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lus, we have to find the magnitudes of the radii Hi and r1 and the angle 
a. If we denote the lead of the helical surface j(Fig. 338) by h 9 and the 
outer and inner diameters of the cylinder by D and <f, respectively, then, 
according to the formula indicated in Sec. 48, the lengths of the corres
ponding segments of the helices will be expressed as follows:

C = Yn*D*+h2 and c =  /jA P + ̂ .
Since in this case the helices are developed into concentric arcs with one 

and the same central angle, we have c :C  — r  ̂\ Hi, and, consequently,

ri -

Designating by a the width of the helix, i.e. the difference R i—ri = D - d

C QC CICwe get Hi =  ri+ a , whence rx =  — n-t-— , or rx Hence it follows

that the angle a can be determined by the formula

a = I n R ^ - C
•360°.

Putting D =  100 mm, d =  60 mm, h = 50 mm, we find: a — 20 mm, 
C »  318 mm, c ^  195 mm, rx ^  32 mm, Hi ^  52 mm, and a % 10°.

We describe two concentric circles of radii Hi =  52 mm and r± =  32 mm, 
construct the central angle a =  10°, and thus single out the portion of the 
ring representing (approximately) the development of one turn of the helical 
surface.

Having several turns developed in the above way, we can combine each 
turn with a cylindrical rod of diameter d (as is shown in Fig. 343), and fasten 
one to another the turns wound on the rod.

Like a helix generated by a point in helical motion, and a helical surface 
generated by a line segment performing helical motion, a helical body can 
be obtained if a plane figure (for instance, a square, a triangle, or a trapezoid) 
is forced to move on the cylindrical surface so that the vertices of this figure 
displace along helices, and the plane containing the figure constantly passes 
through the axis of the cylinder. In this case a thread profile is formed 
bounded by helical and cylindrical surfaces. The construction of such a 
thread profile is reduced to constructing some helices whose number is 
equal to the number of vertices which has the chosen plane figure.

The construction of a thread profile generated by a moving square is 
illustrated in the left-hand drawing of Fig. 342. The square keeps contact 
(with one of its sides) with the cylindrical surface, its vertices moving along 
helices.

When threading a cylindrical rod the thread profile is formed by removing 
a portion of material by means of a cutting tool.
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The thread profile thus obtained is bounded by two right helical surfaces 
and two cylindrical surfaces (outer and inner), the latter touching the surface 
of the cylinder. The combination of a cylinder and a thread profile on it is 
called the screw. Represented in the left-hand drawing of Fig. 342 is a 
screw with a right-hand thread, i.e. on the front (visible) side of the cylinder 
the thread profile rises in the direction from left to right. If it rises in the 
direction from right to left (see Fig. 342, right), then we have a screw with 
a left-hand thread (cf. Sec. 48).

Figure 343 shows a thread profile generated by a moving rectangle 
which contacts the cylinder with its smaller side. Screws of such shape are 
used in screw conveyors*.

The same figure demonstrates the construction of the vertical projection 
a ' of a point A located on the helical surface and specified by its horizontal 
projection a. The construction is similar to that in Fig. 338 but this time 
it is shown how to avoid inaccuracies in drawing the sinusoid. To this end 
we find the line segment / which determines the displacement of point 1 
along the axis of the screw when the generatrix is rotated from the initial 
position to the position Cl (i.e. through an angle ocl). Then we take the 
proportion x  : h = "1 o c l : 360°, whence x  is determined thus yielding the 
magnitude of /. The further construction is obvious from the drawing.

The screws represented in Fig. 342 have a square thread. If instead of a 
square a triangle is taken and is forced to displace along the cylinder in the 
same manner as it was done with the square, then we obtain a screw with a

♦Screw conveyors are used for conveying corn, loose materials, etc.
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Fig. 346 Fig. 347

triangular thread (Fig. 344). The generating triangle adjoins the cylinder 
with one of its sides. The vertices of the triangle generate helices which are 
generated with the aid of two circles. Either of the circles is divided into 
twelve equal parts, and the points of division are projected on the horizontal 
lines drawn through the twelve divisions of the screw lead. The surface of a 
screw with a triangular thread represents a combination of two oblique 
helical surfaces. The visible contour on the V plane is obtained by drawing 
tangents to the projections of the greater and smaller helices (Fig. 345). It is 
common practice, though actually the projection of an oblique helical 
surface on the V plane represents a curved line.

Figure 346 shows the construction of the cross-section of a screw with 
a triangular thread cut by a plane R. An auxiliary horizontal projecting 
plane P is drawn which passes through the axis of the screw. Intersecting 
the helical salient, the plane P singles out the generating triangle* whose 
horizontal projection is situated on the horizontal trace of the P plane. 
The vertical projection of the side AB of this triangle intersects the trace 
Rv at point k' which is the vertical projection of one of the points belonging 
to the line in which the plane R cuts the helical surface. Obtained on the

*The plane P  singles out the generating triangle in two of its positions: on the front 
(visible) and rear (invisible) sides of the screw. Figure 346 shows the construction for the 
front (visible) side of the screw.
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Fig. 348 Fig. 349

line segment ab is the horizontal projection of the point K  belonging to the 
horizontal projection of the required line of intersection of the helical surface 
with the plane R.

Furthermore, one more point M (m \ m) of this section is constructed. 
This time a horizontal projecting plane is not passed in order to show that 
it is quite sufficient to mark only the position of the horizontal projection of 
the generating triangle by drawing one of the radii. Also, instead of con
structing a complete vertical projection of the generating triangle it is 
sufficient to construct only one of its sides, as it is shown in Fig. 346.

Drawing a number of radii and constructing the positions of the generat
ing triangle corresponding to them, we get several points for drawing the 
horizontal projection of the section. As is seen, the section figure is bounded
15*
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by a curved line having an axis of symmetry. Hence, we may construct only 
one half of the curve, the other half being drawn as a symmetrical branch. 
Either half of this curved line represents a spiral of Archimedes.

In the screw depicted in Fig. 344 the generating triangle, after each 
revolution about the axis of the main cylinder, reaches its adjacent position 
which is higher by the magnitude of the lead of the helix. This screw is 
obtained as a result of motion of one thread profile and is called a single- 
thread screw.

\  If a screw has two profiles which are interconnected, then we obtain a 
double-thread screw. In this case either of the profiles is lifted to the height 
2yduring one complete revolution (see Fig. 347).
/  A screw with a right-hand square thread complete with a nut is shown 
in Fig. 348. A horizontal sectional view reveals the line segments bounding 
the section figure together with the semi-circles. These segments testify to 
the fact that the thread profile is bounded not by an oblique but by a right 
helical surface.

A double-thread screw of a double-screw conveyor is shown in Fig. 349. 
This screw is formed by winding a steel circular wire on a steel tube. The 
wire is usually welded to the tube.

Imagining a number of spheres whose diameter is equal to the diameter 
of the wire and whose centres are located on the helix (the axis of the turn), 
we draw the contour of the projection of the turn as a line enveloping the 
circles which represent the projection of the spheres.

The horizontal projection shows the sections of two turns (the contour 
of the projection of the section is constructed as a line enveloping the circles 
obtained as plane sections of the above mentioned spheres).

QUESTIONS TO SEC. 52

1. How are a right and an oblique helical surfaces generated?
2. Why is a right helical surface also called the screw conoid?
3. What does an annular screw conoid represent?
4. How is a helical cylindroid generated?
5. In what lines does a plane perpendicular to the axis of the surface 

cut a right and an oblique helical surfaces?
6. How is it possible to approximately develop a complete turn of a 

right helical surface?
7. What helical surface belongs to developables?
8. What is a screw?
9. How do we make out screws with right-hand and left-hand threads 

by their appearance?
10. What is a multiple-thread screw?
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Sec. 53. Constructing Planes Tangent 
to Curved Surfaces •

When representing curved surfaces and carrying out relevant construc
tions, we may come across a necessity to pass a plane tangent to a curved 
surface.

Let us take a small portion of a surface and a point on it. If through this 
point curves and straight lines tangent to them are drawn then the latter 
turn out to be contained in one plane. This plane is said to be tangent to a 
surface at a given point.

Points at which a unique tangent plane may be drawn are called ordinary 
points. On a surface there may be points at which it is impossible to pass a 
tangent plane. These points are called singular. They include the nodes of a 
surface, the points on the cuspidal edge, and the cusped vertices of surfaces 
of revolution (when a generatrix does not cut the axis of revolution at right 
angles).

A plane is quite defined by two intersecting straight lines. Therefore, to 
construct a plane tangent to a curved surface at one of its points, it is 
sufficient to draw two curves through this point on the surface and to either 
of them a tangent line at the same point. These two straight lines (tangents) 
define the tangent plane.

Finally, we introduce yet another concept, the normal to a surface. This 
is a straight line perpendicular to the tangent plane and passing through the 
point of tangency. It is obvious that problems on construction of normals 
to curved surfaces reduce, essentially, to problems on construction of 
tangent planes. A section by a cutting plane passing through a normal is 
called the normal section.

Figure 350 shows the construction of a plane tangent to a prolate ellip
soid of revolution at its point K. Drawn through this point are a parallel 
of the surface and a tangent KF to it: the projection k 'f' coincides with the 
vertical projection of the parallel, and the horizontal projection k fi  s tangent 
to the horizontal projection of the parallel which is a circle. Taken as a 
second curve passing through the point K  is a meridian which is not shown 
in the drawing: we may take advantage of the principal meridian, which is 
already drawn representing the vertical projection of the ellipsoid. One 
should imagine that the ellipsoid is revolved about its axis AB so that the 
meridian passing through the given point K  occupies the position of the 
principal meridian AKiB, the point K  occupying the position K\. Drawing 
a tangent to the ellipse at point k'l9 we get the vertical projection of the 
second tangent to the ellipsoid at the point K i. Now we have to rotate this 
tangent so that point k\ occupies the initial position k. Point S  being the 
point of intersection of the tangent and the axis of the ellipsoid, remains 
fixed and the tangent to the meridian at the point K  will be represented by 
the projections sk and s’k'. The straight linesKF and SK  define the required 
plane.

Obviously, the above construction is applicable to a sphere as well.
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S'

But here we may proceed in a simpler way due to the fact that a plane tangent 
to a sphere is perpendicular to the radius drawn to the point o f tangency. 
Hence, drawing the radius OA (Fig. 351), we construct the plane specifying 
it by a horizontal line AB and a vertical line AC which is perpendicular to 
OA. These lines determine the plane tangent to the sphere at its point A.

In the above considered examples (Figs. 350 and 351) the tangent plane 
and the surface have one point in common. If we imagine the curves on the 
surface passing through this point, then in the neighbourhood of the point 
of tangency these curves are located on one side of the tangent plane. 
The same could be seen on the paraboloid of revolution, on the torus gener
ated by an arc (which is less than a semi-circle) revolving about its chord, 
etc. Such points on a surface are called elliptic. If all points of a surface 
are elliptic, then this surface is convex, for instance an ellipsoid shown in 
Fig. 350.

Figure 352 illustrates the construction of a plane tangent to a cylinder. 
In the left-hand drawing the plane is passed through a given point C on a 
cylindrical surface, in the right-hand drawing through the point K  outside 
a cylinder.

Here the plane is tangent to a surface not at a single point but at all the 
points on a generating element. Such points of a surface are termed parabolic. 
Surfaces with parabolic points comprise cylindrical and conical surfaces, 
as also surfaces with a cuspidal edge.

The construction presented in the left-hand drawing of Fig. 352 con
sists in the following. We are given a ruled surface, therefore through the
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point C we may draw a generating element AB which is one of the two 
intersecting straight lines defining the tangent plane. The tangent BF to a 
circle (which is the horizontal trace of the given cylindrical surface) may be 
taken as a second straight line. The lines AB and BF determine the required 
tangent plane, BF being the horizontal trace of this plane.

In the right-hand drawing of the same figure a point K  is given outside 
a cylindrical surface. The tangent plane must contain a generating element 
of the surface. Hence, this plane is in general parallel to the direction of the 
generatrix. Therefore, the straight line KM  parallel to the generatrix belongs 
to the tangent plane. The horizontal trace MQ of the required plane is taken 
as a second straight line. Thus, the tangent plane to the cylindrical surface is 
defined by two intersecting straight lines: KM  and MQ. This plane touches 
the surface along the element DE.

A second solution: through the point M  a straight line MN  is drawn 
which is the horizontal trace of a second tangent plane, the element AB 
being the line of tangency.

A plane tangent to a conical surface at its point A is constructed in Fig. 
353. The surface is specified by the vertex S  and the directrix which is an 
ellipse lying on the H  plane.

The element SM  on which the point A is located is a line of tangency of 
a plane, tangent to the conical surface. This element together with the straight 
line MN  tangent to the ellipse on the H  plane determine the plane tangent 
to the given surface.

If the point through which the plane tangent to a given conical surface 
has to be drawn is situated outside this surface, then, to construct the tangent 
plane, proceed in the following way: draw a straight line through the 
vertex S  and the given point, find the horizontal trace of this line, and 
through it draw tangents to the ellipse (as it was shown in the right-hand 
drawing of Fig. 352 where the tangents were drawn to a circle representing
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S'

Fig. 353

the trace of the cylindrical surface on the H plane). In this case we obtain 
two planes tangent to the conical surface.

In the examples given in Figs. 350-353 the tangent planes do not inter
sect the surfaces. This is characteristic for convex surfaces. But in general 
a plane tangent to a surface at one of its points may intersect this surface. 
For instance, the plane tangent to the surface of a hyperbolic paraboloid 
at point O (see Fig. 321) contains the tangent lines Ox and Oy to the para
bolas BOB i and AO A i and cuts the surface into two parts having with it an 
infinite number of points in common.

A plane tangent to a surface at one of its points may cut this surface in 
two straight lines intersecting at this point, in a straight line and a curve, 
and in two curves. For instance, the hyperboloid of revolution of one sheet,
i.e. a ruled surface with two rectilinear generatrices can be cut in two inter
secting straight lines. The same may be said with respect to the hyperbolic 
paraboloid (Fig. 321).

Nondevelopable ruled surfaces such as surfaces with a plane director 
and helical surfaces with a straight-line generatrix (except for an open heli
coid) are cut in a straight line and a curve.

The points of a surface at which the tangent plane cuts the surface are 
called hyperbolic. Along with other surfaces (see above) we may come across 
such points in concave surfaces of revolution (an example of such surface 
is given in Fig. 330).

If a certain part of a surface consists only of hyperbolic points, then the 
surface has a saddle shape within the limits of this part (for instance the 
hyperbolic paraboloid, see Figs. 321 and 322).

Comparing developable ruled surfaces with nondevelopable ruled sur
faces, we see that in the case of developables the tangent planes at different
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points of the generating line are in the same 
direction (for instance, in a conical surface of* 
revolution), whereas in nondevelopables the 
tangent planes at different points of the gene
ratrix have different directions (for instance, 
in hyperboloid of revolution of one sheet).

Sec. 54. Examples of Constructing the Contours 
of the Projections of a Solid of Revolution with 

an Oblique Axis

Figure 354 represents a right circular cone 
whose axis is parallel to the V plane and inclined 
to the H  plane. The contour of its vertical pro
jection (an isosceles triangle s'd'e') is given. It is 
required to construct the contour of its horizon
tal projection.

The required contour is formed from a part of 
an ellipse and two straight lines tangent to it. In
deed, the cone in its given position is projected
on the H plane with the aid of the surface of an elliptic cylinder whose ele
ments pass through the points on the circle of the cone base, and two planes 
tangent to the surface of the cone.

An ellipse in the horizontal projection can be constructed using its axes: 
the minor axis de and the major axis equal to d'e' (to the diameter of the 
circle of the cone base). The straight lines sb and s f are obtained by drawing 
tangent lines to the ellipse from point s. The construction of these lines is 
reduced to finding the projections of the generating elements along which 
the above mentioned planes touch the cone. For this purpose we use a 
sphere inscribed in the cone. Since a horizontal projecting plane touches both 
the cone and the sphere, we may draw a straight line from the point s tan
gent to the circle (which is the projection of the equator of the sphere) 
and take this tangent for the projection of the required element. We may 
begin the construction with finding the point a\ i.e. the vertical projection 
of one of the points belonging to the required element. The point a' is ob
tained as the intersection of the vertical projections of (1) the circle along 
which the sphere touches the cone (fine segment m'n') and (2) the equator of 
the sphere (line segment k'l'). Now we can find the projection a on the hori
zontal projection of the equator and draw, through the points s and a, 
a straight line which will be the horizontal projection of the required ele
ment. Point B is also determined on this line; its horizontal projection 
(point b) is the point at which the straight line touches the ellipse.

With the construction of the contours of the projections of a cone of 
revolution we come across, for instance, in such a case: given are the pro
jections of the vertex of the cone (s\ s), the direction of its axis (,SK), the 
dimensions of the altitude and the diameter of the base; it is required to
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Fig. 355

S '

construct the projections of the cone. 
This is done in Fig. 355 with the aid of 
additional planes of projection.

Thus, to construct the vertical pro
jection, we introduce a plane T  which 
is perpendicular to the V plane and 
parallel to the straight line SK  deter
mining the direction of the cone axis. 
Laid off on the projection stkt is a line 
segment stct equal to the given altitude 
of the cone. At the point ct a perpendi
cular is drawn to stct, and on it we lay 
off a line segment ctbt equal to the radi
us of the base circle. With the aid of the 
points ct and bt9 we get the points d  and 
b' and, hence, the semiminor axis c'b' of 
the ellipse, the latter being the vertical 
projection of the cone base. The line 
segment da! equal to ctbt9 represents 
the semimajor axis of this ellipse.

Having the axes of the ellipse, we 
can construct it in the way shown in 
Fig. 147.

To construct the horizontal projec
tion, we introduce a projection plane P 
which is perpendicular to the H  plane 
and parallel to SK. The construction 
procedure is analogous to that de
scribed for the vertical projection.

How do we construct the contours 
of the projections? Figure 356 shows 
another (compared with Fig. 354) 
method of drawing a tangent line to 
the ellipse, i.e. without using a sphere 
inscribed in the cone.

First, from the centre of the ellipse 
an arc is described of radius equal to 
its semiminor axis (in Fig. 356 this arc 
is equal to a quarter of a circle). Then 
the point 2 of intersection of this arc 
with the circle of diameter s'd is deter
mined, and from this point a straight 
line is drawn parallel to the major axis 
of the ellipse to intersect the ellipse at 
points k[ and k'2. To complete the con
struction, we draw straight lines s'k[Fig. 356
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and s'k'2 which are tangent to the el
lipse and constitute part of the con
tour of the projection of the cone.

Figure 357 demonstrates a solid 
of revolution with an inclined axis 
parallel to the plane V. The solid is 
bounded by a combined surface con
sisting of two cylinders, the surface 
of an annular torus and two planes.
The contour of the vertical projec
tion of this solid is its principal me
ridian.

The contour of the horizontal 
projection of the upper cylindrical 
part of the given solid is made up of 
an ellipse and two straight lines tan
gent to it. The straight line ab is the 
horizontal projection of the generat
ing element of the cylinder along 
which the horizontal projecting plane 
touches the surface of the cylinder.
The same refers to the contour of the 
projection of the lower cylinder (in 
Fig. 357 this contour is not com
pleted). Now we pass over to the 
intermediate part of the contour 
which is the most complicated. We 
must construct the horizontal pro
jection of the space curve through
whose points there pass the projecting lines tangent to the surface of an 
annular torus and perpendicular to the H  plane. The vertical projection of 
each point belonging to this curve is constructed using the method applied 
for the point a' in Fig. 354, i.e. with the aid of inscribed spheres. The hori
zontal projections of the points are determined on the projection of the 
equator of the corresponding sphere. In this way, for instance, point 
Z>i(rfi, d[) is constructed.

Points k\ and k 2 are obtained on the equator of the sphere with centre 
from the point k[(k£), the latter being obtained when constructing the line of 
recall tangent to the constructed curve b'd^c'.

Thus, the curve h 'd ^ c '  contains the vertical projections of the points 
whose horizontal projections fc, du k± are on the contour of the horizontal 
projection of the solid under consideration.

Fig. 357



236 DESCRIPTIVE GEOMETRY

QUESTIONS TO SECS. 53-54

1. What is the plane tangent to a curved surface at a given point of this 
surface?

2. What is a regular point of a surface?
3. How do we construct a plane tangent to a curved surface at one of its 

points?
4. How is the normal to a surface defined?
5. How do we construct a plane tangent to a sphere at one of its points?
6. In what case a curved surface is considered to be convex?
7. May a plane tangent to a curved surface at one of its points intersect 

this surface? Give an example when a surface is cut in two straight lines.
8. How do we use spheres inscribed in a surface of revolution whose axis 

is parallel to the V plane for constructing the outline of the projection of this 
surface on the H  plane with respect to which the axis of the surface of revo
lution is inclined at an acute angle?

9. How do we draw a tangent line to an ellipse from a point lying on the 
extension of its minor axis?

10. In what case will the contours of the vertical and horizontal projec
tions of a cylinder of revolution and a cone of revolution be absolutely 
identical?



CHAPTER 9

INTERSECTION 
OF CURVED SURFACES WITH A PLANE 

AND A STRAIGHT LINE

Sec. 55. The General Methods of Constructing Lines 
of Intersection of a Curved Surface with a Plane

To find the curved line of intersection of a ruled surface by a plane, we have 
(in the general case) to construct the points o f intersection of generating ele
ments of the surface with the cutting plane, i.e. to find the point of intersection 
of a straight line and a plane. The required curved line (the section line) 
passes through these points. An example is given in Fig. 358 where a conical 
surface specified by a point S  and a curve ACE is cut by a vertical projecting 
plane T. The horizontal projection of the line of intersection is drawn 
through the horizontal projection of the points of intersection of a number 
of elements by the plane T.

In this example the construction is simplified due to the fact that the 
secant plane T  is of a particular position. But the above mentioned method 
(obtaining the points of intersection of a number of rectilinear elements of a 
surface with a given secant plane in order to draw through them the re
quired line of intersection) is applicable for any position of the cutting 
plane.

To construct the line of intersection of a double-curved surface by a plane, 
we have (in the general case) to use auxiliary planes. The points of the required 
line are determined as the intersections o f the lines along which auxiliary 
planes intersect the given surface and plane. In this respect the reader should 
remember Fig. 166 which illustrates how auxiliary planes are used for 
constructing the line of intersection of two planes.

In all cases when auxiliary planes are used the constructions involved 
should be as simple as possible.

Figure 359 represents a solid of revolution cut by a plane specified by 
the trapezoid ABCD. To construct the points of the curved lines obtained 
on the surface of the solid of revolution, auxiliary secant planes are used 
here. Let us consider one of them, say plane Q. Intersecting the surface of 
the solid of revolution, this plane yields a circle (a parallel) of radius o'qV,



and intersecting the plane ABCD, a horizontal line AqDq. The intersection of 
the parallel of the surface of revolution with the horizontal line AqDq yields 
the points Xq and Yq belonging both to the surface of revolution and to the 
plane ABCD, i.e. belonging to the required line of intersection. Repeating 
this technique, we get a number of points determining the curvilinear part 
of the section line. The plane faces of the given solid of revolution are cut by 
the plane ABCD in straight lines represented by the line-segments AD and 
BC.

In the above considered example the construction is simplified due to 
the fact that the axis of the solid of revolution is perpendicular to the H  
plane, and, hence, the parallels are projected on this plane, and, hence, the 
parallels are projected on this plane into circles. The plane of symmetry S  
made it possible to check the correctness of the relative positions of the points 
belonging to the curves axqb and dyqc (for instance, xq2 should be equal to 
y92).

Applying the method of replacing projection planes or the method of 
revolution, we can obtain positions of the figures convenient for their con-
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struction instead of the general positions in which they were specified in the 
system V, H. But all this does not refer to the above described method based 
on the introducing of auxiliary planes. This method is applicable irrespective 
of the positions of the intersecting surface and plane.

In a number of cases the curve to be obtained as the intersection of a 
surface by a plane is known, and its projections can be constructed on the 
basis of their geometrical properties. Let us, for instance, recall the spiral of 
Archimedes (Fig. 340) obtained as the intersection of an oblique helicoid 
by a plane perpendicular to its axis. Obviously, it is advisable to construct 
this spiral as it is shown in Fig. 340 and not to find the points for it by 
projecting them.

Sec. 56. A Cylindrical Surface Cut by a Plane.
Constructing the Development

The curved line obtained as the intersection of a cylindrical surface by a 
plane should be generally constructed by finding the points of intersection o f  
generating elements with the secant plane, as it was said in the previous 
section with respect to the ruled surfaces in general. But this does not ex
clude the possibility of using auxiliary planes, each time intersecting both a 
surface and a plane.

Let us first of all note that any cylindrical surface is cut by a plane parallel 
to the generatrix o f this surface in straight lines {generating elements). Fi
gure 360 shows the intersection of a cylindrical surface by a plane. In this 
case this surface serves as an auxiliary element for constructing the point 
of intersection of a curved line with a plane: through the given curve DMNE 
(see the left-hand picture of Fig. 360) is passed a cylindrical surface which 
projects the curve on the H  plane. Furthermore, the plane (a triangle in 
Fig. 360) cuts the cylindrical surface in a plane curve M i . . .  Ni. The re
quired point of intersection of the curve with the plane (point K) is obtained 
as the intersection of two curves—the given and the constructed one.

This scheme of solving the problem on intersection o f a curved line with a 
plane coincides with the scheme for solving the problem on intersection of a 
straight line and a plane (see Secs. 23 and 25). In both cases through the line 
an auxiliary surface is drawn; for a straight line it is a plane.

The horizontal projection of the curve M i . . .  Ni along which the cy
lindrical surface intersects with the plane coincides with the horizontal 
projection of the curve D . . .  E, since this curve is the directrix for the cy
lindrical surface whose generating elements are perpendicular to the H  plane. 
Therefore, using the point mi on the projection ac, we can find the projection 
m[ on a'c\ and using the points nl9 the projection n[. Furthermore, the right- 
hand drawing of Fig. 360 shows an auxiliary plane S  which intersects ABC 
along a straight line CF and the cylindrical surface along its element with 
the horizontal projection at point 1. The intersection of this element with 
the straight line CF yields a point (with the projections 1 and T) belonging
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to the curve M i . . .  N±. Obviously, we may not indicate the trace of the 
plane but simply draw a straight line in the triangle as it is shown with re
spect to the line C(7 on which a point with the projections 2 and 2' is obtained.

In examples given below we are going to dwell on developments. A cylind
rical surface may be generally developed following the scheme for developing 
the surface of a prism. We consider here the cylindrical surface as if it were 
substituted by an inscribed or circumscribed prismatic surface whose edges 
correspond to the elements of the cylindrical surface. The development itself 
is accomplished with the aid of a normal section (as in Fig. 283), but instead 
of a polygonal a smooth curve is drawn.

Figure 361 represents a right circular cylinder cut by a vertical projecting 
plane. The figure obtained in section is an ellipse with the minor axis equal 
to the diameter of circular base of the cylinder. The length of its major axis 
depends on the angle between the secant plane and the axis of the cylin
der.

Since the cylinder axis is perpendicular to the H plane, the horizontal 
projection of the figure obtained in the section coincides with the horizontal 
projection of the cylinder.

To construct the points belonging to the contour of the section, we usually 
draw uniformly arranged elements, i.e. such elements whose horizontal 
projections are points equidistant from one another. This marking is con
venient to be used not only for constructing the projections of the section 
but also for developing the lateral surface of the cylinder, as it will be shown 
below.
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The section figure is projected on the W plane into an ellipse whose major 
axis is equal in this case to the diameter of the cylinder and the minor axis is 
represented by the projection of the line segment 1'7'. In Figure 361 the 
profile projection of the cylinder is constructed with the cut-off portion 
removed.

I f  in Figure 361 the plane P was inclined to the cylinder axis at an angle 
of 45°, then the ellipse would be projected on the W plane into a circle. In this 
case the line segments 1"7" and 4" 10" would turn out to be equal to each 
other.

If the same cylinder is cut by an oblique plane inclined to the cylinder 
axis also at an angle of 45°, then the section figure (ellipse) can be projected 
into a circle on an additional projection plane which is parallel both to the 
axis of the cylinder and the horizontal lines of the secant plane.

Obviously, with an increase in the angle of inclination of the cutting 
plane to the axis the line segment 1"7" decreases. But if this angle is less 
than 45°, then the segment 1"7" increases to become the major axis of the 
ellipse on the W plane with the line segment 4" 10" as the minor axis of this 
ellipse.

The true shape of the section, as it was mentioned above, is an ellipse. 
Its axes are obtained in the drawing: the major axis is the line segment 
io7o =  1'7\ its minor axis being equal to the line segment 4q100 equal to the 
diameter of the cylinder. The ellipse can be constructed by these axes.

Figure 362 shows a complete development of the lower part of the cylin
der. The developed circumference of the base circle of the cylinder is divided 
into equal parts in accordance with the divisions obtained in Fig. 361. The 
segments of the intersected elements are laid off on the perpendiculars erec- 
ed at the points of division. The upper end-points of these segments correst- 
pond to the points on the ellipse. Therefore, drawing through them a smooth
16-23012
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curve, we get a developed ellipse (this line represents a sinusoid) which serves 
as the upper border of the development of the lateral surface of the cylinder.

The developed lateral surface is complete with the base (a circle) and the 
section (an ellipse) which enables us to make the model of a truncated cy
linder.

Figure 363 demostrates an elliptical cylinder with a circular base; its 
axis is parallel to the V plane. To determine the normal section of this cy
linder it should be cut by a plane perpendicular to generating elements, in 
this case by a vertical projecting plane. The normal section represents an 
ellipse whose major axis is equal to the line segment 3o7o, and the minor 
axis to 1q50 =  7'5'.
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If it is required to develop the lateral surface of this cylinder, then we 
develop the curve bounding the normal section into a straight line, erect 
perpendiculars to it at appropriate points of this line, and lay off on them 
the line segments of the generating elements taking them from the vertical 
projection. To mark the elements we divide the circumference of the base 
circle into equal parts. As a result, the ellipse (the normal section) is also divid
ed into the same number of parts but not all of them are of equal length. 
The ellipse can be developed into a straight line by consecutively laying off 
sufficiently small parts of the ellipse.

Figure 364 shows a right circular cylinder cut by an oblique plane. The 
secant plane forms an acute angle with the cylinder axis and, therefore, cuts 
the cylinder in an ellipse.

Like the case represented in Fig. 361, the horizontal projection of the 
section coincides with the horizontal projection of the cylinder. That is why 
the position of the horizontal projection of the point of intersection of any 
element of the cylinder with the plane P is known (for instance, point a in 
Fig. 365). To find the corresponding vertical projection we may draw in the 
plane P a horizontal or a vertical line on which the required point must be 
located. Figure 365 uses a vertical line. The projection a! lies at the point 
where the vertical projection of the vertical line intei sects the vertical pro
jection of the corresponding element. One and the same vertical line deter
mines two points of the curve, A and B (Fig. 365). But if a vertical line corres
ponding to point C is constructed, then this line will determine only one point 
of the curved line of intersection. The vertical line drawn through the points 
D and E  determines the extreme points d' and e\

Continuing analogous constructions, we may find sufficient points for 
drawing the vertical projection of the line of intersection.
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The upper part of the cylinder shown in Fig. 366 is cut away. If it is not 
removed, then the vertical projection represents a complete cylinder, and 
the line of intersection is drawn as it is shown in Fig. 364.

Figure 365 shows auxiliary vertical planes Q> S9 T  intersecting the cylinder 
along generating elements, and the plane P, along vertical lines. This corres
ponds to what was said at the beginning of the present section. The auxiliary 
plane T  only touches the cylinder, thus determining only one point on the 
curve.

When constructing the vertical projection of the line of intersection, 
besides the points d' and e' (Fig. 365), we have to find two more reference 
points, namely, m ' and rt\ i.e. the uppermost and lowest points of the ver
tical projection of the section. For their construction, we have to take an 
auxiliary plane perpendicular to the trace Ph and passing through the axis 
of the cylinder (Fig. 366). This plane is a common plane of symmetry for 
the given cylinder and secant plane P. On finding the line of intersection of 
the planes P and R, we mark the points rri and ri by constructing them on 
the vertical projection with the aid of the points m and n.

Another method for finding the points rri and ri consists in passing two 
planes tangent to the cylinder whose horizontal traces are parallel to the 
trace Ph. These planes will intersect the plane P along its horizontal lines 
(auxiliary planes K  and L in Fig. 364). On marking the points m and n, we 
construct the points rri and ri on the vertical projection of the found hor
izontal lines.

The line segment Misrepresents the major axis of the ellipse which is the 
figure cut by the plane P from the given cylinder. This is seen in Fig. 366,
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where the true size of the section is constructed (an ellipse coincident with 
the H  plane). But the line segment m'n' in the same drawing is by no means 
the major axis of the ellipse which is the vertical projection of the section 
figure. The major axis can be found with the aid of the conjugate diameters 
m'n' and f'g ' (Fig. 364) using the construction indicated in Sec. 21, or a spe
cial construction set forth in Sec. 76.

The true size of the section can be found by bringing the secant plane 
into coincidence with one of the projection planes, H  or V.

In Figure 366 the ellipse in the coincident position is constructed using 
its major and minor axes (in the same drawing point Do is obtained by bring
ing into coincidence a vertical line).

The development of the lateral surface is shown in Fig. 364. Pay attention 
to the fact that the points (horizontal projections of the elements) are marked 
on the circumference of the base beginning with the point n. This simplified 
the construction, since one and the same horizontal line yielded two points 
on the vertical projection of the ellipse. Besides, the development has an 
axis of symmetry. But the points d and e are not among the points marked 
on the circumference.

Another example of constructing the section of a cylinder of revolution 
by a plane is given in Fig. 367. This construction is carried out using the 
method of replacing projection planes. The secant plane is specified by two 
intersecting straight lines: a vertical line (AF) and a profile line (AP). Since 
the profile projection of the vertical line and the vertical projection of the 
profile line lie on one line (a' — a"9 a"f"  = a'p')9 these straight lines are 
contained in the planes V and W9 respectively (see the left-hand picture of 
Fig. 367). The axis V/W  passes through a"f" ia'p').

We introduce a new plane S  so that S  is perpendicular to W  and AP. 
The secant plane turns out to be perpendicular to S9 and the projection of the
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section figure on S  is obtained in the form of a line segment 2S6S equal to the 
major axis of the ellipse. The position of the segment as6s is determined by 
constructing the projections of the points A and 1 on the plane S .

Let us follow the construction of some points. To avoid unnecessary 
constructions, the projection 7" was taken on the extension of the perpen
dicular drawn from o" onto W/S. The projection V was obtained from the 
point 7"; the line segment 7'7" laid off from the axis W/S  determined the 
point l s and the projection of the centre of the ellipse (point o5) which co
incides with the point l s. Knowing the projections os and o"9 we can obtain 
the centre of the ellipse o' which is the required vertical projection of the 
section figure.

Points 2S and 2" determined the point 2' which is the nearest to the plane 
W9 and the points 6S and 6" the point 6'—the most remote from W.

Point 5, is taken from 5", and found with the aid of points 5S and 5" is 
the point 5' which is one of the points determining the separation of the 
ellipse on the vertical projection of the cylinder into visible and invisible 
parts. The second point is located symmetrically to the point 5' about o'.

The rest of the constructions is obvious from the drawing. The section 
figure in its true size (the ellipse in the top right corner of Fig. 367) is con
structed by its axes: the major axis is equal to 2S6S9 the minor axis being 
equal to the diameter of the cylinder.

QUESTIONS TO SECS. 55-56

1. How do we construct the curved line of intersection of a curved surface 
by a plane?

2. In what lines is a cylindrical surface cut by a plane passed parallel to 
the generatrix of this surface?

3. What method is generally used for finding the point of intersection of 
a curved line and a plane?

4. In what lines is a cylinder of revolution cut by planes?
5. In what case is the ellipse obtained as the intersection of a cylinder of 

revolution whose axis is perpendicular to the H  plane by a vertical projecting 
plane projected on the W  plane into a circle?

6. How an additional plane of projection should be arranged so that the 
ellipse obtained as the intersection of a cylinder of revolution whose axis is 
perpendicular to the H  plane and an oblique plane inclined to the cylinder 
axis at an angle of 45° is projected on this additional plane into a circle?

Sec. 57. A Conical Surface Cut by a Plane.
Constructing the Development

To construct the curved line obtained as the intersection o f a conical surface 
with a plane9 in the general case the points o f intersection o f generating ele
ments with the secant plane should be found.
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I f  a plane cutting a conical surface passes through its vertex, then two 
straight lines (generating elements) are obtained (AA i and BBi in Fig. 368).

Let us consider an example illustrating such intersection of a conical 
surface.

Suppose that in a plane specified by a point S  and a horizontal line MN  
(Fig. 368, right) it is required to draw through the point S  a straight line 
forming an angle a with the H  plane.

The locus of straight lines forming an angle a with the H  plane is a 
conical surface of revolution whose axis is perpendicular to the H  plane and 
with the point S  as its vertex (by hypothesis). Consequently, the given plane 
passes through the vertex of a cone and cuts its surface in straight lines (ele
ments). These elements are the required lines, since they pass through the 
point S  in a given plane at a given angle a to the H  plane.

Now we have to represent the cone (it is not completed in Fig. 368), for 
which purpose we draw a straight line s’a! and describe from s as centre an 
arc of radius sa9 the base of the cone being taken in the horizontal plane 
passing through the line MN. The rest is obvious from the accompanying 
drawing.

Compare this construction with those accomplished in Figs. 245 and 
246 (see Sec. 38).

Figure 369 represents a right circular cone placed on the H  plane. Q is a 
tangent plane to the given cone, it touches the cone along the generating ele
ment SC. The trace Qh is tangent to the circle which is the horizontal pro
jection of the cone base. The fact that the point S  lies in the plane Q is estab
lished with the aid of a horizontal line SN. The plane P passes through the
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vertex of the given cone and intersects the latter along the elements SA and 
SB.

The right-hand drawing of the same figure represents the planes not by 
their traces. The plane tangent to the cone is specified by the element SC and 
a straight line CD tangent to the base circle. The plane passing through the 
vertex and intersecting the cone along the elements SA and SB is specified 
by a straight line AB contained in the plane of the cone base and a straight 
line SE passing through the vertex of the cone and intersecting the line at 
point E.

I f  a plane passes through the cone axis, then it cuts the cone in two elements 
with an angle between them maximal for the given cone. In the mentioned 
drawing these elements are SF and SK, the angle between them being equal 
to the vertex angle between the contour lines of the vertical projection of the 
cone.

If the secant plane does not pass through the vertex of the cone then the 
latter is cut in one of the following four curves: (1) an ellipse if the secant 
plane intersects all the elements of one nappe of the conical surface, or in 
other words, it is parallel to none of the cone elements (planes Q> Qi, and 
Q2 in Fig. 370); in this case the angle between the secant plane and the cone 
axis is greater than that between this axis and the generatrix of the cone; (2)
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a circle* if the secant plane is perpendicular to the axis of the cone (the plane 
Qs in Fig. 370); (3) a parabola if the secant plane is parallel only to one of the 
elements (the plane T  in the same figure); in this case the angle between the 
secant plane and the cone axis is equal to the angle between this axis and the 
generatrix of the cone; (4) a hyperbola if the secant plane is parallel to two 
elements (the planes S, Si, and S2 in the same drawing); in this case the 
angle between the secant plane and the cone axis is less than that between 
this axis and the generatrix of the cone.

The right-hand (bottom) drawing presents the angles a, /Si, and /S2, a being 
the angle between the traces Tiv and T2v of the planes cutting the cone in 
parabolas. If the traces are drawn through the point o' inside the angle a, 
then this determines the planes cutting the cone in hyperbolas, and if they 
are drawn through the point o' inside the angles /Si and /S2, then we obtain 
the planes cutting the cone in ellipses.

Consider the proof of the assertion that if  the secant plane is parallel to 
none o f the cone elements and does not pass through its vertex, then the cone 
is cut in an ellipse.

Whatever the given relative positions of the cone and secant plane in 
space, by transforming the drawing they can always be brought to a position 
in which the axis of the cone will turn out to be perpendicular to the H plane.

’"May be regarded as an ellipse with equal axes.
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and the secant plane will become a vertical projecting plane. Figure 371 
shows a cone and a secant plane T  in just such relative positions represented 
in the vertical and profile projections.

Inscribed in the cone are spheres tangent to the plane T  at points F\ and 
F2, and to the cone along parallels passing through points K\ and K2, re
spectively. The points Fi and F2 are obtained in the plane of the principal 
meridian and, consequently, are collinear with the points A\ and A2 belong
ing to the section of the cone by the plane T. This section is projected on the 
V plane into a line segment a

Let us consider the generating element of the cone lying in the profile 
plane and mark on it the points Ki and K2 at which the inscribed spheres 
touch this element, and the point M  belonging both to the same element and 
to the curved line of intersection of the cone by the plane T. It is known that 
the segments of tangents drawn from a point to a sphere determined by 
this point and the points of tangency are equal to each other. Whence, 
MKx = MFi and MK2 =  MF2. Adding termwise, we get MKi+MK2 =  
=  MFi+MF2. But MKx+MK2 =  KiK2, i.e. the sum of distances of a point 
taken on the section curve to two fixed points Fi and F2 belonging to the 
plane containing this section is a constant equal in this case to the line seg
ment K\K2. This segment of a cone element is situated between two of its 
parallels and does not depend on the choice of the point M  on the section 
curve. Indeed, if not M  but another point were taken on the section curve 
of the cone, then the element passing through it would touch both spheres 
at points lying on the same parallels. The segment of that element between 
the points of tangency would be equal to the same segment KiK2.

The conclusion drawn shows that the point M  belongs to the locus of 
points the sum of whose distances from two given points has a certain con
stant value. This corresponds to the definition of the ellipse.

Similarly, we draw conclusions for the cases of intersection of the cone 
of revolution along a parabola and hyperbola.
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Figure 372 represents a cone of revolution cut by a vertical projecting 
plane. The points of intersection of the trace Qv with the vertical projections 
of elements represent the projections of points belonging to the required 
curve of intersection (in the present case it is an ellipse). With the aid of 
these projections, the horizontal and profile projections are found.

One of the axes of the ellipse (the major one) is projected on the V plane 
into a line segment k ' p the other (minor) axis perpendicular to the V plane 
is projected into a single point, i.e. into the mid-point of the segment k'p'.

If through the point O a plane N  is passed perpendicular to the cone axis 
(in the case parallel to the H  plane), then the projection of the minor axis 
is obtained (Fig. 373) as the chord te of a circle which is the horizontal 
projection of the conic section by the plane N.

The projection of the minor axis can also be obtained by the construction 
shown in the right-hand drawing of Fig. 373. The cone is cut in a triangle 
revolved and brought in coincidence with the V plane. The line segment 
ooto is equal to the semiminor axis. Laying off this segment from the point 
o perpendicular to kp, we obtain the minor axis (tt± =  2 ooto).

The horizontal and profile projections of the section figure are ellipses. 
The profile projection may turn out to be a circle, since at a certain inclina
tion of the secant plane the projections of the axes of the ellipse may appear



252 DESCRIPTIVE GEOMETRY

equal to each other. But the projection of the section figure (ellipse) on a 
plane perpendicular to the cone axis (in the present case on the H  plane) 
cannot be a circle.

Figure 374 (left) shows how to find for a cone the direction of the vertical 
trace of vertical projecting planes cutting this cone in ellipses which are 
projected on the W plane into circles. The construction is carried out on 
the vertical projection of the cone. The bisector of the angle s'm'k' intersects 
the axis of symmetry at point ri. Drawing at this point a perpendicular to 
the bisector m'ri, we find the point p'. A straight line drawn through the 
points k' and p' indicates the direction for the vertical traces of the required 
secant planes. The problem is reduced to constructing the diagonal of an 
equilateral trapezoid k'm'p'q' in which a circle with centre at the point ri 
can be inscribed. Drawing through the point ri a straight line parallel to 
q'p'9 we get the point o \ i.e. the projection of the centre of the ellipse whose 
vertical projection is the line segment k'p'.

Will the ellipse obtained as a result of intersection of the cone with the 
plane Q be projected on the W  plane in the form of a circle? (See the right- 
hand drawing of Fig. 374). The construction carried out in Fig. 374 yields 
one of checking methods: through the point p ' we draw a straight line 
parallel to the base, construct the bisector of the angle p'q'k\ and get the 
point ri. Since the perpendicular drawn at point ri to this bisector does not
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Fig. 374

pass through the point k \  the 
profile projection of the section 
figure will turn out to be an el
lipse but not a circle.

Figure 375 shows the con
struction of the vertical projection 
of a hyperbola obtained as a 
result of intersection of a cone 
of revolution with a horizontal 
projecting plane.

Since the horizontal projec
tion of the hyperbola coincides 
with the trace Sh, the intersec
tion of this trace with the hori
zontal projection of the base de
termines the points a and b. Us
ing these points, we find the pro
jections a' and V.

To find the point c' (the up
permost point of the vertical pro
jection of the hyperbola), we draw 
an auxiliary horizontal projecting 
plane through the cone axis per
pendicular to the trace Sh- The 
horizontal projection c of the 
required point C is obtained as 
the intersection of Sh and Th- On 
finding the vertical projection of 
the element SK> we mark the 
point c' on it.

We then determine the point 
d" at which the vertical projection 
of the hyperbola is separated into 
a visible and invisible parts. This 
point is found with the aid of the 
generating element SN.

Other points of the hyperbola 
can be found by drawing several
elements within the limits of the portion of the conical surface denoted by 
the letters SAKB, or several auxiliary secant planes. Shown in Fig. 375 is 
one of such auxiliary planes—a horizontal plane U cutting the surface of 
the cone in a circle. With the aid of this plane points F and G are found.

A second hyperbola is obtained on the second nappe of the conical surface.
Figure 376 shows the construction of the projections of a section of a right 

circular cone by an oblique plane specified by a horizontal line AC and a 
vertical line AB. Furthermore, the section figure is constructed in its true size.
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Fig. 376

The construction is carried out using the method of replacing projection 
planes. An additional projection plane P is introduced chosen so that it is 
perpendicular not only to the H  plane but also to the secant plane: the axis 
P/H is drawn perpendicular to the projection ac. The secant plane is pro
jected on the plane P into a straight line on which the section figure (the 
segment 1P2P) is located. This determines the major axis of the ellipse in 
which the cone is cut by the given plane. The projection of the centre of the 
ellipse is found at the point op bisecting the segment 1P2P. The plane N  
passed perpendicular to the axis of the cone makes it possible to find the minor 
axis of the ellipse (in Fig. 376 a semi-circle is described and inside it a line 
segment Op3p is constructed equal to half the minor axis of the ellipse). 
Using the points oP9 1P9 2P, we find the horizontal projections o, 7, 2, 
and then the vertical projections o', V, 2' situated at the same distance 
from the axis VjH  at which the horizontal projections op, lp, 2P are located 
from the axis P/H. 2' is the uppermost point on the vertical projection, and 
V is the lowest point of the ellipse which represents the vertical projection 
of the section figure. To determine the positions of the points 5' and 6 ' at
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which the ellipse on the vertical projection is separated into “visible” and 
“invisible” parts, we construct the projections spdp and spf p of the generating 
elements SD and SF, and find the points 5P and 6 P. Using the latter, we 
construct the horizontal projections 5 and 6 , and then the vertical projections 
5' and 6 \  But it is possible to find only the point 5' and to draw through it 
a straight line parallel to the projection a'b\ since the plane containing the 
principal meridian intersects the given secant plane along a vertical line.

Being situated on the horizontal of the secant plane, the minor axis of the 
ellipse is projected on the H  plane true length (segment 3-4) and serves also 
as the minor axis for the ellipse which is the horizontal projection of the 
section figure. The true size of this figure is obtained by constructing an 
ellipse by its major axis (l 02o = 1P2P) and minor axis (3040 =  3-4)

Figure 377 demonstrates an analogous construction with the secant 
plane specified by its traces.
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We begin the construction with finding the points lying on the contour 
of the vertical projection of the cone. To this end we pass through the cone 
axis an auxiliary secant plane R parallel to the V plane, Rh being the trace of 
this plane. The plane R intersects the plane P along a vertical line and the 
cone along two elements. The points A and B yielded by the intersection 
of the vertical line with the elements of the cone belong to the required line 
of intersection of the cone by the plane P.

At points a! and b' the vertical projection of the line of intersection 
touches the contour of the vertical projection of the cone and is separated 
into two parts: visible and invisible. Then another two reference points* 
are constructed, namely, the uppermost and lowest points of the section 
for which purpose we draw an auxiliary secant plane Q (a horizontal pro
jecting one) perpendicular to the trace Ph and passing through the axis of 
the cone. The plane Q cuts the cone along the elements ST (s't\ st) and SU 
(s'u\ su) and the plane P along the line NK (rik\ nk). Points C and D 
obtained as the intersections of the elements ST  and SU with the line NK 
are the required points. The line segment CD is the major axis of the ellipse 
in which the given cone is cut by the plane P. The projection cd is the major 
axis of the ellipse which is the horizontal projection of the section figure. 
Bisecting CD, we get the position of the centre of the ellipse; points o' and 
o are the centres of the ellipses (which are the projections of the section 
figure).

To find intermediate points of the line of intersections, it is convenient 
to use horizontal secant planes, since they cut the surface of the cone in 
circles and the plane P along horizontal lines. Suitable for this construction 
are only the planes whose vertical traces are contained within the limits of 
d  and d \ since in this case there are no points higher than the point d' 
and lower than the point d  belonging to the line of intersection. Figure 
377 shows the construction of points P, P, G, H  with the aid of two such 
planes. One of them is passed through the point O thus determining the line 
segment ef which represents the minor axis of the ellipse obtained as a 
result of intersection of the cone by the plane P, and at the same time the 
minor axis of the horizontal projection of this ellipse.

The line segments dd ' and e’f  are conjugate diameters** for the ellipse 
representing the vertical projection of the section figure. Using them, we 
can find the axes of the ellipse.

The true size of the section is found by bringing the secant plane into 
coincidence with the H  plane. An ellipse can be constructed by its axes 
whose lengths are found by bringing into coincidence the end-points of the 
axes: Co and D0 for the major axis, and P0 and Fo for the minor axis.

♦Such points as the farthest from and the nearest to the plane o f projection; those 
separating a curve into a visible and invisible parts, the end-points of the axes of ellipses 
are called reference points.

♦♦For conjugate diameters see Sec. 21.
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Fig. 378

Figure 378 shows the construction of the development. The lateral 
surface of the cone is developed into a circular sector whose angle is com
puted by the formula a =  — -360°, where r is the radius of the circumference
of the cone base, and / is the generatrix of the cone.

To construct the line of intersection on the developed lateral surface of 
the cone, we have to draw a number of generating elements and to determine 
the lengths of their segments. Then we construct these elements on the 
developed surface of the cone and lay off the lengths of the corresponding 
segments. Figure 378 illustrates the development of the lateral surface of the 
cone with the line of intersection constructed on it. The lengths of segments 
of the relevant elements are determined by revolving the elements to the 
position parallel to the V plane (this construction is shown for two ele
ments).

Figure 379 indicates how the points farthest from and nearest to the 
plane H are found to construct the line of intersection. In this case a cone 
is cut by an oblique plane Q. To construct these points planes P and T  are 
passed tangent to the cone so that their traces Ph and 7* are parallel to Qh- 
This determines the elements of the conical surface on which the required 
points K  and M  must be located.

First we construct the horizontal projections k and m as the points of 
intersection of the horizontal projections of the horizontal lines along which 
the planes P and T  intersect the plane Q with the horizontal projections of 
the elements SA and SB> and then the projections k ' and m' are marked on 
the vertical projections of these elements.
17-23012
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Figure 380, a shows the construction of the curves obtained on the 
surface of a cone of revolution when intersected by the faces of a regular 
hexagonal prism*. Two of the lateral faces are situated in horizontal pro
jecting planes P and Q, and the third one in a vertical plane S. The positions 
of these planes relative to the axis of the cone enable us to determine at once

*To save thejspace, only half o f the horizontal projection is represented.
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what curves are obtained as the intersections. In this case we obtain hyper
bolas, one of them being projected on the V plane without distortion.

To find the points of the curves, parallels are taken on the cone. First of 
all reference points 7, 4, 2, 5 are found on the horizontal projection. From 
them we determine the points 7', 4\ 2', 5' on the vertical projection. Then, 
with the aid of an auxiliary horizontal plane T, first point 6 ' is determined 
on the contour of the vertical projection of the cone, and then point 6  is 
obtained. Using a circle of radius 0 6  we construct points 7, 8 , and 9, and 
finally find the points 7', 8 \  P'.

Figure 380, b represents a hexahedral nut (only the front view is given). 
The curves separating the lateral faces of the nut from its conical part 
represent hyperbolas; their projections are constructed in the way similar 
to that shown in Fig. 380, a.

QUESTIONS TO SEC. 57

1. What is the general method of constructing the curved line of inter
section of a conical surface by a plane?

2. How a plane should be passed in order to cut a conical surface in 
straight lines?

3. In what curves is a cone of revolution cut by planes?
4. Is it possible to inscribe spheres in any conical surface?
5. How do we construct the minor axis of an ellipse obtained as the 

intersection of a cone of revolution by a plane?
6 . Into what curve is an ellipse obtained as the intersection of a cone of 

revolution projected on a plane perpendicular to the axis of the cone?
7. How do we construct the development of the lateral surface of a 

cone of revolution?
8 . What curves are represented on a nut with a conical chamfer?

Sec. 58. A Sphere and a Torus Cut by a Plane.
An Example of Constructing the Line of Intersection 

on the Surface of a Combined Solid of Revolution

Whatever the direction o f the secant plane is, the latter always cuts a 
sphere in a circle which is projected into a line segment, an ellipse, or a circle 
depending on the position of the secant plane relative to the plane o f projection 
(Fig. 381). The major axis {3-4) of the ellipse representing the horizontal 
projection of the section circle is equal to the diameter of this circle 
{3 - 4  =  7'2'), the minor axis (7-2) being obtained by projecting. Points J' 
and & on the vertical projection of the equator enable us to find the points 
5 and 6  at which the ellipse representing the horizontal projection of the 
circle is separated into visible and invisible parts.

When constructing the projections of a circle obtained as the intersection 
of a sphere by a plane, use is made of auxiliary planes which cut, for in-
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V

stance, a sphere in parallels, and a plane in horizontals. We also resort to 
the transformations of drawings to make the secant plane perpendicular 
relative to the additional plane of projection.

The curved line o f intersection o f a torus by a plane is generally constructed 
also with the aid o f planes cutting the torus and the secant plane. For a torus 
we choose planes cutting it in circles (as we know, the torus has two systems 
of circular sections: in planes perpendicular to its axis, and in those passing 
through this axis). In general, the construction scheme is analogous to that 
shown in Fig. 359. Indeed, as is seen in Fig. 382, auxiliary planes Si and 
iS>2 perpendicular to the axis of the torus (in this case an annular torus) cut 
its surface in circles of radii and R 2, and the plane P along straight lines 
projected on the V plane into points 3 \ 5', 7', i.e. perpendicular to the V 
plane. In this way the points belonging to the section figure are obtain
ed.

Let us explain the construction represented in Fig. 382. Two representa
tions are given for the annular torus: half of the vertical projection and the 
profile projection. The torus is cut by a vertical projecting plane P. A semi
circle of radius Ri is the line of intersection of the torus by an auxiliary 
vertical plane S i. This semi-circle touches the trace Pv, thus determining 
only one point (J', 3") belonging to the line of intersection of the torus 
surface and the plane P and lying in the plane Si. But if we pass a plane S 2, 
then it will contain two points belonging to the required line of intersection. 
The plane S 2 determines on the surface of the torus a semi-circle of radius 
R2 which intersects the trace Pv at two points 5' and 7' representing the 
vertical projections of the points at which the plane P intersects the torus
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surface. Proceeding in the same way several times more, we may obtain 
a number of points for the required line of intersection.

The section figure has axes and centre of symmetry. Determined in the 
process of construction, the distances U and / 2 of the planes Si and S 2 from 
the vertical plane of symmetry of the torus are used for plotting the points 
J o  and 5 o  when constructing the true size of the section (points 40, 6 0 , 7 o ,  S o  

are plotted making use of symmetry).
The section curve thus obtained resembles the ellipse. But, of course, 

it is only formal resemblance, since the ellipse is a second-order curve (see 
Sec. 21), whereas the curved line of intersection of the torus surface is 
expressed by an algebraic equation of the fourth degree*.

Figure 383 illustrates different sections of an open torus. In the first case 
it is cut by a plane passing through the axis of the torus (/ =  0 , where / is 
the distance of the secant plane from this axis) in two circles, in the rest of 
the cases (2 to 5) in different curves depending on /, R, and r. They are 
named Perseus* curves (in honour of one of the geometers of Ancient Greece). 
These are algebraic curves o f the fourth degree.

The curves (2-5) shown in Fig. 383 have different forms: an oval with 
one axis of symmetry (2), a two-leafed curve with a node at the origin (3), 
a wavy curve (4), an oval with two axes of symmetry (5) (see Fig. 382). These

*A closed curve constructed in Fig. 382 belongs to ovals, i.e. convex closed plane 
curves without corner points. There are ovals made up of circular arcs, and hence con
structed with the aid of a compass only. Of course, they are particular cases of ovals.
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curves become ovals o f Cassini* (particular cases of Perseus’ curves): for 
an open torus when R >  2r, when R =  2r, and when F <  2r; for a closed 
(*  =  >0 and a self-intersecting (/£ <  r) tori if / =  r, and for an open torus 
a lemniscate of Bernoulli** is obtained (Fig. 384). Its origin is a double point, 
since the tangents ( y  =  ± jc )  are mutually perpendicular.

Figure 385 represents a body of revolution whose part under considera
tion is bounded by three cylindrical surfaces, a conical surface, a spherical 
surface, and three surfaces of an annular torus, and also by two vertical

♦Jean Dominique Cassini (1625-1712), French astronomer, geographer, and geome
ter. Oval o f Cassini is an algebraic curve of fourth degree which is symmetric about the 
coordinate axes. It is the locus of points M  for which FrM- F2M  =  a2, where Fx and Ft 
are fixed points (foci), and a is a constant.

♦♦James (or Jacques or Jakob) Bernoulli (1654-1705), Swiss physicist, analyst, 
combinatorist, probabilist, and statistician, the first and perhaps most famous of the 
Bernoulli family of mathematicians. The lemniscate of Bernoulli is an algebraic curve of 
the fourth degree having the form of the figure eight. It is the locus of points M  for which 
FxM -F2M  =  (FiF2/2)2, where Fx and F2 are fixed points (foci).
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planes (the drawing gives only half of the top view and half of the profile 
section view).

Intersecting the surface of the solid of revolution, these planes yield 
what is called “section lines”. Section lines are frequently used in mechanical 
parts which represent solids of revolution.

First of all we establish “parts” into which the bounding surface is men
tally subdivided. This is done with the aid of conjugacy points either on the 
centre lines, or on the perpendiculars to the elements of the cone and cylin
ders*. Through the points of conjugacy we pass profile planes cutting each 
of the surfaces in a circle. The arcs of these circles represented on the W plane 
determine the profile projection of the reference points on the section line. 
The position of points b" determines the position of points b'.

The section line on the cone here is a hyperbola. Its vertex (point c') is 
found from the obvious position of the projection c". Knowing the position 
of the point c", we determine the projection of the circular arc on which 
point C must lie. Also shown are “intermediate” points constructed on each 
part of the section line (one point for each part). The construction is obvious 
from the drawing.

There is no need to find “intermediate” points on the spherical and 
cylindrical surfaces, since the sphere is cut in a circle represented on the

♦In Figure 385 the conjugacy points are shown only on one half o f the front view.
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main view without distortion, the radius of this circle being obtained as the 
greatest of line segments c"fc". The cylindrical surfaces are cut along its 
generating elements.

Sec. 59. Carved Surfaces Cut by a Straight Line

The left-hand drawing of Fig. 386 shows the intersection of a straight 
line with a cylindrical surface. The surface is specified by its horizontal trace 
(the curve MN) and the direction of the generatrix (the straight line MT). 
Through the line AB we pass an auxiliary vertical projecting plane S  which 
intersects the given cylindrical surface along a curve constructed by points 
at which its elements intersect the plane S . The intersection of the obtained 
curve with the given straight line AB yields a point K  at which the line AB 
intersects the cylindrical surface.

This is the general method for constructing the points of intersection of a 
straight line with any surface: draw an auxiliary plane through the line, find 
the line o f intersection o f this plane with the surface; the point o f intersection 
of the given straight line and the line constructed on the surface will be the 
required point of intersection o f a straight line and a surface.

Here we see a complete analogy with the construction of the point of 
intersection of a straight line with a plane (see Secs. 22 and 25).

The construction shown in Fig. 386 (left) is, of course, simplified if the 
auxiliary plane T  (the right-hand drawing) is parallel to the element MT: the 
surface turns out to be intersected along a straight line parallel to M T  which 
is determined by a single point L. This is one of possible particular cases, 
namely, the given line AB is contained in a plane parallel to the element 
MT.

Sometimes it is unnecessary to show auxiliary planes. Examples are 
given in Fig. 387: a right circular cylinder whose axis is perpendicular to the 
H  plane (left), and a right circular cone with the axis in the same position 
(right). The horizontal projection of the point of intersection of a straight 
line AB perpendicular to the H  plane with the lateral surface of the cone 
coincides with the horizontal projection of the line itself. Drawing the hor
izontal projection of the element ST  and constructing its vertical projection 
sft'9 we find the vertical projection k' of the required point.

An auxiliary plane to be passed through a straight line intersecting a surface 
should be chosen so that simplest sections are obtained.

For instance, when a conical surface is cut by a straight line, use should 
be made of a plane passing through its vertex and, hence, intersecting this 
surface along straight lines. When a cylindrical surface is cut by a straight 
line an auxiliary plane should be passed through the given line parallel to 
the generatrix of this surface; then it will intersect the cylindrical surface 
along straight lines.

Another example with a cone is given in Fig. 388 where the points of 
intersection are found by means of a plane P defined by the vertex of the 
cone and the given straight line.
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Fig. 387
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To construct the elements along which the plane P cuts the cone, we have 
to find one point more (in addition to the point S) for each element. These 
points can be obtained as the intersections of the horizontal trace of the 
plane P with the circumference of the cone base. In Figure 388 the plane 
containing the base is taken for the horizontal plane of projection (H), 
therefore the trace of the auxiliary plane is denoted by Ph. For its construc
tion we take an auxiliary straight line SC (a horizontal line contained in the 
plane P) and find the horizontal trace of the line AB. The trace Ph passes 
through the point m parallel to the projection sc. The required elements will 
pass through the points 7, V and 2, 2', the points K\ and K2 being the points 
of entry and exit for the line AB cutting the cone.

If a frustum of a cone is given (Fig. 389) and it is impossible to construct 
the vertical projection of the vertex, then we may take the point n' for the 
vertical projection of the point of intersection of the given straight line AM\ 
with an auxiliary straight line passing through the vertex S. On finding the
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projection n, we construct the horizontal projection of the auxiliary line 
SM 2 (using the point s). The further procedure is obvious from the drawing.

Figure 390 illustrates the construction of points K  and M  at which a line 
segment AB cuts a sphere of radius R. Here use is made of the method of 
replacing projection planes.

First of all we pass a horizontal projecting plane S  through AB (the 
horizontal trace of this plane coincides with the projection ab). It cuts the 
sphere in a circle whose radius R\ is equal to the line segment cl. Taking 
the same plane S  for an additional plane of projection to form a new system 
S 9 //, we construct the projection asbs of the Une segment AB (aas = a!2\ 
bbs =  b'3') and the projection of the circle in which the plane S  cuts the 
sphere. Laying off csc =  o'4\ we find the projection cs of the centre and 
from this point as centre strike an arc of radius Ri to get points ks and ms 
(there is no need to describe a complete circle of radius Ri). Using these 
points, we first find the projections k  and m, and then k ' and m'.

One more example of constructing the points of intersection of a straight 
line with a surface bounding a surface of revolution is given in Fig. 391. 
Besides two planes, the solid is bounded by two cylindrical surfaces of revo
lution and an intermediate part belonging to the surface of an annular torus. 
The straight line intersects one of the cylindrical surfaces at point Ki and 
the surface of the annular torus at point K2. To find the projections of this 
point, we find the curve with the projection 7-2-3, 7'2'3' obtained as a result 
of intersection of the surface of the torus by the plane S  passed through the 
line AB perpendicular to the H plane. The curve is plotted point by point 
with the aid of parallels. Two such points (M and N) are shown in the draw-
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ing. Then the line pierces the surface 
of the annular torus at point K$ and 
leaves the surface through the point K\.

Let us now consider the construction 
shown in Fig. 392 which represents an 
oblique cylinder with a circular base.

To construct the points of intersec
tion of the cylindrical surface by a 
straight line AB, we pass a plane P de
fined (besides the line AB) by an addi
tional straight line BMi drawn through 

✓  the point B parallel to the generatrix of 
the cylinder. Such a plane intersects 
the cylinder along its elements. If we 
find the horizontal traces of the straight 
lines defining the plane, then we can 
draw the horizontal trace of the plane 
P. Marking the points (1 and 2) of in
tersection of the trace Ph with the cyl
inder base (contained in the H plane), 
we draw through these points straight 
lines parallel to the horizontal projec
tion of the generating element of the 
cylinder and mark the points ki and 
k 2 which are the horizontal projections 
of the points of intersection of the line 
AB with the surface of the cylinder. 
Finally, we find the points k[ and k f2. 

This construction may also be considered as an oblique projection of a 
cylinder and a straight line AB on the horizontal plane of projection. They 
are projected in the direction parallel to the generatrix of the cylinder. Point 
M  of the line AB is located in the plane //, the point M i being an oblique 
projection of the point B on the H plane. The line mmi is an oblique pro
jection of the line AB on the H plane. And the cylinder is projected on this 
plane into its base. The further details are obvious from the drawing.

Fig. 391

When solving problems on intersection of a surface by a straight line, it 
may turn out that the given line does not intersect but only touches the curve 
bounding the figure in which the given surface is cut by a plane passed 
through the straight line. In this case the line is tangent to the given surface. 
In general, if it is required to determine how a line is arranged with respect 
to a surface, then we have to pass through the line a plane cutting the surface 
and consider the relative positions of the straight line and the figure obtained 
as a result of intersection of the surface with a plane.
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The present section is dedicated to constructing points obtained as the 
intersections of a curved surface and a straight line. The common method 
consists in : (1) passing a plane through a given straight line, (2) constructing 
the line of intersection of the surface by this plane, (3) finding the points of 
intersection of the constructed line with the given line.

But how do we proceed if a surface should be intersected not by a straight 
line but by a plane curve? Obviously, the above described method is ap
plicable in this case as well. Here the plane containing the plane curve is taken 
for the plane to be passed through the line.

QUESTIONS TO SECS. 58-59

1. In what line is a sphere cut by any plane and what are the projections 
of this line?

2. What does the method of constructing the section of a torus by a 
plane consist in?

3. How should the planes cutting a torus in circles be directed?
4. What curves are obtained when a torus is cut by a plane parallel to 

its axis? In what case do these curves become ovals of Cassini? In what case 
is the lemniscate of Bernoulli obtained?

5. What is meant under the “section curve”?
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6. What does the general method of constructing the points of intersec
tion of a straight line with a curved surface consist of?

7. How should an auxiliary secant plane be passed when a cone is cut by 
a straight line to obtain straight lines on the surface of the cone?

8. May we use an oblique projection when a straight line cuts a cylinder 
whose generatrix is not perpendicular to the plane of projection?



CHAPTER 10

THE INTERSECTION 
OF CURVED SURFACES

Sec. 60. A General Method for the Construction 
of the Line of Intersection of Surfaces

A general method for the construction of the line of intersection of sur
faces consists in finding the points o f this line with the aid o f secant planes*. 
As is clear from the left-hand picture of Fig. 393, the surfaces I  and II  are 
intersected by an auxiliary surface III wich intersects the surface I  along 
the line AB and the sufra(e II along the line CD. The point K  at which the 
lines AB and CD intersect is common for the sufraces I  and II and, hence, 
belongs4to the line of their intersection. Repreating the foregoing method, we 
obtain a number of points of the required line. This method was already 
used when we considered the construction of the line of intersection of two 
planes (see Sec. 24.). Then the problem was reduced to using two auxiliary 
planes (see Fig. 166). Eithet of them enabled us to hind one point common 
to the planes whose point of intersection had to be found.

Applying the general method for the construction of the line of intersec
tion of two curved surfaces, we may:

(1) cut the surfaces by auxiliary planes;
(2) intersect the surfaces by auxiliary curved surfaces (for instance, by 

spheres).
When solving problems, sometimes it is advisable to use auxiliary planes 

in combination with auxiliary curved surfaces. The auxiliary cutting surfaces 
should be selected so that the lines of intersection with the given surfaces 
are as simple as possible and convenient in construction (straight lines or 
circles).

In general case auxiliary cutting planes are also used for the construction 
of the line of intersection of a curved surface with a faced surface.

The above described general method for the construction of the line of 
intersection of two surfaces does not exclude the application of another 
method, provided one of them is a ruled surface. The latter method consists 
in the following: find the point at which the rectilinear generatrix of one

•T his line is o ften  called a  transition  line.
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Fig. 393

surface intersects the other surface, and, repeating this construction for a 
number of elements, draw the required line through the found points. The 
right-hand picture of Fig. 393 illustrates how through the element SM  of 
the surface I  a plane III is passed which cuts the second surface (//) in a curve 
CD; the element SM  intersects this curve at point K  through which the re
quired line of intersection of the surfaces I  and II will pass.

This is also applicable to the case when a curved surface is intersected 
with a faced surface: here the role of elements is played by the edges of the 
faced surface.

Thus, to construct the points o f the lines obtained on one surface when it is 
cut by another surface, we use all kinds o f auxiliary cutting planes (oblique 
planes included)> curved surfaces, rectilinear generating elements o f curved 
ruled surfaces, and edges o f faced surfaces. I f  necessary, we resort to the 
methods for transformation o f the drawing in order to simplify and specify the 
constructions involved.

In most examples given below we consider geometric solids, i.e. portions 
of space bounded with various surfaces. Of two surfaces only one intersects 
the other. Therefore, one of the surfaces is preserved forming holes in the 
intersecting surface. We usually distinguish between (1), penetration with 
two separate lines of intersection (see, for example, Fig. 412, where a cone 
with a horizontal axis enters another cone), or one line with a node (Fig. 
427), and (2) cutting when one line is obtained (see, for example, Figs. 396 
and 426).

Cast parts usually have smooth transitions, i.e. transitions from one sur
face to another via an intermediate surface (say, a torus). Then, to indicate a 
transition, we construct the line of intersection (transition line) of geometric 
forms which are the basis of technical forms (see, for instance, Fig. 399 and 
430)*.

*In sim ilar cases, i.e. w hen a  m onolithic solid is considered, it is m ore precise to  
speak o f the line o f coupling the  surfaces.
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The projections of the line of intersection are obtained within the limits 
of the common portion of the projections of both surfaces.

In constructing the projections of a transition line first find so-called 
obvious points which are determined without any constructions. Then deter
mine the reference (definitive) points located, for instance, on the extreme 
generating elements of surfaces of revolution or the extreme edges separating 
the visible portion of the transition line from the invisible. Classified under 
reference points are also the extreme points of an intersection line: the 
uppermost and lowest relative to the H  plane, nearest and farthest with 
respect to the viewer, right-hand, left-hand, and so on.

Sec. 61. The Choice of Auxiliary Cutting Planes 
in the Cases when They Can Intersect 
Both Surfaces Along Straight Lines

When both surfaces are cylindrical or conical, or one of themi> cylindri
cal and the other is conical, in a number of cases axiliary planes should be 
chosen so that they intersect both surfaces along straight lines (generating 
elements of these surfaces). The point of intersection of an element of one 
surface with an element of the other belongs to the line of intersection.

Figure 394 gives an example of choice of cutting planes for the case of 
mutual intersection of two cylinders, the plane P (“plane director”) defined 
by two intersecting lines LM  and LN  (respectively parallel to the generatrices 
of the cylinders) serving as “pattern” for them. This is an oblique plane; 
consequently, in the present case the auxiliary secant planes are also oblique. 
It is sufficient to take the horizontal traces of such planes, drawing them 
parallel to the trace Ph, since the directions of the straight lines along which 
these planes intersect both cylinders are known—they are parallel to their 
directrices. For instance, the trace Pm parallel to Ph intersects either of the 
directrices of the given cylinders at two points which enables us to determine 
their generatrices. These generatrices intersect at four points which just 
belong to the required line of intersection. The construction is carried out 
proceeding from the assumption that one cylinder penetrates into the other 
making two holes in its surface.

Obviously, in such construction we may take a random element of one 
cylinder, draw the trace of an auxiliary plane through the trace of this 
element, as it is done with thc§(|ace Pm, and examine whether this plane yields 
points of intersection with tfilfielements of the other cylinder obtained with 
the aid of the same plane.

The pattern of auxiliary secant planes for the cases when a cylinder 
penetrates into a prism or vice versa is constructed in a similar way.

Figure 395 depicts the line of intersection constructed for the case when 
a pyramid penetrates into the surface of a cylinder. To choose the planes 
which would intersect along straight lines not only the faces of the pyramid 
but also the cylindrical surface (along its elements), a straight line SM  is 
drawn parallel to the generatrix of this surface and passing through the vertex
18-23012
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Fig. 394

of the pyramid. Obviously, if instead of a pyramid a cone is taken, then we 
proceed in the same way: we draw a straigh]|toie through the vertex of the 
cone parallel to the generatrix of the cylirrapcal surface. The horizontal 
traces of the auxiliary cutting planes must pass through the point m which 
will correspond to passing the planes through the line SM. The horizontal 
traces of the planes intersect the horizontal traces of the lateral surfaces of 
the cylinder and pyramid at points through which the horizontal projections 
of the lines of intersection of the auxiliary planes with the given surfaces 
pass. For instance, the trace Th intersects the horizontal projections of the 
sides of the pyramid base at points d and e which corresponds to the inter
section of the faces SBC and SAC by the plane T  along the straight lines SD
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and SE. But the same plane T  cuts the cylindrical surface along the element 
with the initial point 7, 7'. The intersection of this element with the lines 
SD and SEyields points 8, 8' and 9, 9' belonging to the line of intersection. 
This line is located on the cylindrical surface, since in this case the pyramid 
penetrates into the cylinder piercing its upper base to make a triangular 
hole in it.

The curves obtained on the given cylindrical surface are elliptic arcs, 
since they represent the intersections of this surface by planes (faces of the
is*
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pyramid). It is necessary to begin the construction with finding the points 
of intersection of the edges of the pyramid with the cylinder.

Figure 396 demonstrates the line of intersection formed on the surface 
of a cone (with the vertex S) when the latter is cut by a cone with the ver
tex T.

In this case the points belonging to the line of intersection are determined 
by oblique planes each of which must pass through the vertices of both 
cones.

Prior to all relevant constructions, a straight line is drawn through the 
vertices S  and T. The planes passing through the line ST  cut the conical 
surfaces along their elements.

These planes form a pencil with the line ST  as its axis. Constructing the 
horizontal trace of this line, we get a point m through which the horizontal 
traces of the required planes must pass, for instance, the trace Ph. Intersecting 
the circumference of the base circle of the cone with the vertex S , the trace Ph 
yields points a and b with the aid of which we can find the horizontal projec
tions of the elements SA and SB on the surface of this cone. Then we find 
the vertical projections of these elements (s'a' and s’b').

We came across a similar method in Fig. 282 representing a mutual 
intersection of two pyramids.

But in this case the horizontal trace Ph does not enable us to determine the 
elements of the cone with the vertex T  lying in the plane P. Therefore we 
find the profile trace Pw which cuts the line of intersection of the conical 
surface with the W plane at points c" and d". On constructing the horizontal 
and vertical projections of the points C and D, we draw the elements of the 
cone with the vertex T: CT and DT (c't\ ct and d 'f, dt). The found elements 
intersect at points belonging to the required line.

Passing a number of auxiliary planes through ST, we can construct a 
number of points belonging to the required line of intersection and pass 
through them a smooth curve.

Comparing the constructions represented in Fig. 396 with those of Figs. 
394 and 395, we see that in them it was sufficient to construct only the hori
zontal traces, and in the case represented in Fig. 396 the profile traces were 
also needed. This is explained by that the bases of the solids considered in 
Figs. 394 and 395 are located on the H  plane, while in Fig. 396 only one of the 
cones rests against the H  plane. Therefore, when the bases of the solids are 
contained in different planes of projection (Fig. 397), we have to use the 
corresponding traces of the cutting planes. But if, as in Fig. 396, the surface 
of one of the cones does not meet the plane of projection, then it is extended 
to this plane by constructing its trace.

The passing of cutting planes through the line joining the vertices of the 
cones is obviously suitable for the case when a conic surface is intersected by 
a pyramid.

In Figure 396 not only oblique planes (for instance, plane P) but also 
planes of particular positions are used to find some points. Thus, the plane 
passed through the point T  parallel to the H  plane (the trace Qv) .cuts the
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Fig. 397

cone along the elements TE and TEu and the cone with the vertex S  in a 
circle FFi. The intersection of its horizontal projection with et yields the 
horizontal projections 5 and 6 by which we find the vertical and profile 
projections 5', 6' and J", 6". Passing through S  a profile plane, we determine 
the points with the projections 7, 7', 7" and 8, 8\  8

Sec* 62. The Use of Auxiliary Cutting Planes 
Parallel to the Projection Planes

The use of auxiliary cutting planes was already demonstrated in Fig. 396 
where one plane was parallel to the H  plane, and the other to the W plane. 
But the leading role was played by a pencil of oblique planes with a common 
straight line ST. We are going here to consider some examples of finding the 
points belonging to the required curve only with the aid of planes parallel to 
the projection planes. It happens when such planes cut the intersected sur
faces in straight lines or in circles.

In Figure 398 a frustum of a cone whose axis is perpendicular to the W 
plane penetrates into a hemi-sphere forming a closed curve on its surface. 
In this case the points on the line of intersection are found with the aid of 
planes parallel to the W plane and perpendicular to the axis of the cone. 
The planes P and Pi cut the surface of the hemi-sphere in circles of radii 
o'a' and o and the conical surface in circles of radii c"b" and 
On constructing these circles on the W plane, we find the profile projections 
of the points belonging to the required line. Thus, at the intersection of the 
circles obtained with the aid of the P plane we mark points V  and 2". The 
vertical and horizontal projections of these points lie on the traces Pv and P*. 
Using the plane Pi, we find the points 5, 3' and 4, 4'.

Since the axis of the cone is parallel to the H  plane, passing through it a 
plane Q parallel to the H  plane, we cut the conical surface along its elements,
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Fig. 398

and the spherical surface in a circle. Constructing the projection of the circle 
on the H plane, we find the points 5 and 6 as the intersections with the pro
jections of the corresponding elements of the cone.

In this example the positions of the points 7, 7  and S, 8' are obvious. 
These points, as also the points 5, 5' and 6, 6', belong to reference points; 
aen nearged drawing shows the construction of point 6 in which the projec
tions of the element of the cone and the curve of intersection touch each other.

Another example is given in Fig. 399 where the points of the line of inter
section of two surfaces are found with the aid of cutting planes parallel to 
the H plane and in one case (point B) to the W plane. Here it is more appro
priate to speak of a transition line, since the represented part (a bearing cap) 
is manufactured by casting and where the conical surface merges with the 
spherical no pronounced line of intersection is obtained. But constructed in 
Fig. 399 is just the line of intersection, since we consider geometrical forms 
here.
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The procedure is clear from the drawing. To construct the projections of 
the point B which is important for determining the transition between the 
projections of the cone element and the line of intersection on the W  plane 
(point b"), a profile plane passing through the cone axis is taken. The 
spherical surface is cut in a circle of radius R\ =  7'2'. First we find the projec
tion b'\ and then b' and b. The point B, the same as A and C, is a reference 
point*.

Q U E ST IO N S TO  SECS. 60-62

1. What does the general method for constructing the line of intersection 
of two surfaces consist in ?

2. If at least one of the intersecting curved surfaces is a ruled one, is it 
possible to construct the line of intersection using the points of intersection 
of the elements of this ruled surface with the other surface?

3. What is the difference between “penetration” and “cutting” occurring 
when one surface intersects the other?

♦For the projections o f  the  line o f  intersection o f  a  spherical and conical surfaces 
see Sec. 65.
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4. Within the limits of what part of the projections of intersecting sur
faces is the projection of the line of intersection pbtained?

5. What points of the line of intersection of surfaces are called reference 
points?

6. What recommendations for choosing auxiliary cutting planes may be 
made for the cases of intersection of cylinders, cones, prisms, and pyra
mids?

7. In what cases is it recommended to use auxiliary secant planes parallel 
to the projection planes for constructing the line of intersection of two 
surfaces?

Sec. 63. Some Special Cases of Mutual Intersection 
of Two Surfaces

1. Figure 400 represents the intersections of: (1) two cylinders with par
allel generatrices, (2) two cones with a common vertex. In both cases the 
lines of intersection of the surfaces are generating elements common to these 
surfaces.

Suppose it is required to construct the projections of the straight line 
passing through the point B on the axis of projection and inclined at an 
angle a to the H plane and at an angle /? to the V plane. It is known that for 
an oblique line a+/5 <  90° (see Sec. 13).

The locus of straight lines passing through a given point and making an 
angle a with the H  plane is a conical surface of revolution whose vertex is 
situated at the given point and the generatrix forms an angle a with the H 
plane.

Analogously, the locus of straight lines passing through a given point 
and forming an angle with the V plane is a conical surface of revolution 
whose vertex is situated at the given point, and the generatrix forms an 
angle with the V plane.

Obviously, the required straight line must simultaneously belong to 
both conical surfaces having a common vertex at the given point, i.e. must be 
the line of their intersection, or in other words, their common generating 
element. We get eight rays emanating from point B which meet the preset 
conditions (four straight lines).

Figure 401 shows how one of these rays is constructed. The first cone is 
determined by the generatrix BAi and the axis perpendicular to the H  plane; 
the second cone is defined by the generatrix BA2 and the axis perpendicular 
to the V plane. For the present we have only one point B (a common vertex 
of the cones) for constructing the required straight line. The second point 
(point K) which is common for the surfaces of these cones is found with the 
aid of sphere with point B as centre (see Fig. 415).

Another example when in the process of some construction we use the 
property of the intersection of two conical surfaces with a common vertex 
along a common straight line (element) is the construction of the element of a
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(a) (b)
Fig. 400

ruled surface called a cylinder with 
three directrices (for this surface 
see Sec. 50, B, Item 2.2). Suppose 
we are given a straight line AB and 
curved lines as the directrices (Fig. 
402). If we take a point (K) on the 
rectilinear directrix as a common 
vertex of auxiliary conical surfaces 
for which the given curves serve as 
the directrices, then the straight 
line of intersection of these conical 
surfaces, passing through their ver
tex, will also intersect their direc
trices, i.e. will turn out to be a 
rectilinear generatrix of the cylin
der with three directrices. Obvi
ously, we have to take a number 
of points of the given straight line 
and to carry out the above men
tioned construction for each of 
them which will yield several ele- 

q ments of the cylinder with three 
“L directrices.

If the three directrices of this 
surface are curved lines, then the 
indicated method of construction 
remains the same: the points
serving as vertices for auxiliary 
conical surfaces are taken on one of 
the given curves.

2. In some cases of intersection 
of surfaces of revolution of the 
second order the line of intersec
tion decomposes into two plane 
curves of the second order. It hap
pens when both intersecting sur
faces of revolution (a cylinder and a 
cone, two cones, an ellipsoid and a 
cone, etc.) are circumscribed about 
a common sphere. In the examples 
given in Fig. 403 the lines of 
intersection in the first three cases 
are ellipses, in the fourth case an 
ellipse and a parabola, and in the 
fifth case an ellipse and a hyper
bola.Fig. 402
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Figure 404 (left) represents two cylinders of equal diameters with inter
secting axes. From the point of intersection of the axes a sphere can be 
drawn inscribed in both cylinders. The surfaces intersect along a line con
sisting of two ellipses. The right-hand drawing of the same figure also repre
sents two cylinders of equal diameters, but this time their axes intersect 
not at right angles. The line of intersection is made up of two semi-ellipses.

The curved lines of intersection of the surface depicted in Figs. 403 and 
404 are projected on the vertical plane of projection into rectilinear seg
ments, since a common plane of symmetry for each pair of the considered 
surfaces is parallel to the V plane.

In the examples under consideration we come across a double contact 
of two intersecting surfaces of second order, i.e. the surfaces have two points 
of tangency, and, consequently, two planes either of which touches both 
surfaces at their common point. The above mentioned constructions are
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Fig. 406
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based on the following two statements:* (1) second-order surfaces having 
a double contact intersect each other along two second-order curves, the planes 
of these curves passing through a straight line defined by two points of contact; 
(2) two second-order surfaces circumscribed about a third second-order surface 
(or inscribed in it**) intersect each other along two second-order curves. 
The second statement known as Mongers theorem follows from the first one.

On the basis of these statements we can find the circular sections of an 
elliptic cone and an elliptic cylinder (see Sec. 50). An example is given in 
Fig. 405 where a sphere is taken so that it has a double contact with the 
surface of an elliptic cone. The sphere and cone intersect each other along 
two plane curves which are circles contained in profile projecting planes 
T  and Q represented in the drawing by their profile traces. Planes parallel 
to the planes T and Q produce two systems of circular sections of the 
elliptic cone.

3. Coaxial surfaces of revolution (i.e. surfaces with a common axis) 
intersect along circles. Figure 406 gives three examples: (a) a cylinder and 
a cone, (b) an oblate ellipsoid and a frustum of a cone, (c) two spheres. 
In all these examples only the vertical projections are given, a common 
axis of the surface being arranged parallel to the V plane. Therefore the 
circles obtained as the intersections of the surfaces are projected on the V 
plane into rectilinear segments.

Any diameter of a sphere may be taken for its axis. Therefore intersecting 
spheres are considered as coaxial surfaces of revolution. A cylinder and a 
sphere, a cone and a sphere, a surface of revolution and a sphere represent
ed in Fig. 407 may also be considered as coaxial surfaces. The axes of the

*For their proofs see a course of analytic geometry.
**For instance, two oblate ellipsoids of revolution inscribed in a spherical surface.
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cylinder, cone, and surface of revolution pass through the centres of the 
spheres. Their intersections are circles.

Figure 408 gives examples of representation of coaxial surfaces of 
revolution and intersecting drilled holes of the same diameter used in 
machine drawing. The surfaces are designated by letters in the following 
ways: annular torus by T, cone by C/7, cylinder by C/, sphere by Sph. The 
lines of intersection are also denoted by letters: a circle by Crcl, an ellipse 
by E. These lines are projected into rectilinear segments, since the axes of 
the represented surfaces are parallel to a projection plane (in the present 
case to the V plane).

Sec. 64. The Use of Auxiliary Cutting Spheres

The intersection of surfaces of revolution with a sphere considered in 
the preceding section underlies the use of spheres as auxiliary surfaces in the 
construction of the lines of intersection of the given surfaces.

Given in Fig. 409 are two surfaces of revolution with intersecting axes 
and, consequently, with a common plane of symmetry parallel to the V 
plane. From the point of intersection of the axes we can describe a number 
of spheres. Suppose a sphere designated as Sph. 1 is constructed. It cuts 
either of the surfaces in circles whose intersections yield the points common 
for both surfaces and, hence, belonging to the line of intersection. As is
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seen from the drawing, the construction is considerably simplified due to 
the fact that the plane of symmetry common for the given surfaces is parallel 
to the V plane. Therefore, the circles in which a sphere intersects both sur
faces is projected on the V plane into rectilinear segments. Moreover, the 
projection of the line of intersection is constructed without using the other 
projections of the surfaces.

Of course, we construct several spheres in order to get a sufficient number 
of points necessary for drawing the required projection of the line of inter- 
section. Figure 409 shows one more sphere (Sph. 2) which only touches the 
surface with a curved-line generatrix yielding point 2'. This point is a 
“last” one for the vertical projection, since spheres of smaller diameters will 
not supply points for the required line.

Finally, we have to draw through the points a\ 7', 2', 7i and b' a smooth 
curve which will be the vertical projection of the line along which the two 
surfaces are joined into a single unit.

Thus, the whole construction is carried out using only the front view.
So, if it is required to construct the line of intersection of two surfaces 

of revolution with intersecting axes, then we may use auxiliary cutting 
spheres with the centre at the point of intersection of the axes of the sur
faces.

Figure 410 supplies another example illustrating the use of spheres in 
a construction analogous to that shown in Fig. 409. This time only one of 
the intersecting surfaces is a surface of revolution, the other being an ob
lique circular cone (see Sec. 50). The latter has a number of circular sections 
parallel to one another.

Each of these sections may be taken for a parallel of the sphere whose 
centre is taken on the axis of the cylindrical surface. For instance, taking 
a parallel with centre Oi (the projection oi), we draw through Oi a per-
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JR__
Sphere

Fig. 411

pendicular to the plane containing the parallel to intersect the axis of the 
-cylinder. The point C1 (projection c[) is taken for the centre of the sphere 
cutting either of the surfaces in circles: the conical surface is cut along the 
taken parallel with centre 0 1, and the cylindrical surface in a circle obtained 
by “pulling” the surface onto the sphere. As a result, on the vertical projec
tion we get the point V belonging to the projection of the required line of 
intersection. Analogously, we can find the centre C2 (projection c'2) for 
constructing a sphere with the aid of the chosen parallel whose centre is at 
point 0 2 (the projection o2). The further constructions are clear from the 
drawing.

Thus, auxiliary spheres may also be used in the cases when a surface of 
revolution is intersected by a surface having parallel circular sections whose 
centres lie on a single line intersecting the axis of the surface of revolution.

Figure 411 illustrates the construction of the line of intersection (for 
Tather “coupling”) of a surface of revolution and a sphere (the element AB 
of the cylinder touches the sphere at point B). The surfaces have a common 
plane of symmetry parallel to the V plane. The centre of one auxiliary 
sphere (Sph. 1) is taken at the point with the vertical projection c\. The 
radius of this sphere is taken equal to the line segment cxl'x (in this case 
this is the least radius for an auxiliary sphere). At the same time it is the 
radius of the circle along which the auxiliary sphere Sph. 1 touches the 
cylindrical surface. This sphere cuts the given sphere of radius R in a circle 
of diameter l 2l$. The intersection of the straight lines 7 ^ 3  and cx Vx yields 
point V which is one of the points belonging to the projection of the required 
line of coupling of a cylinder and sphere.

The second auxiliary sphere (Sph. 2) is drawn from the point also taken 
on the axis of the cylinder (its projection is c!J). This sphere yields the 
point 2 '.

On obtaining some more points between the extreme points b' and c\ 
we can draw the vertical projection of the required line. At point 7' obtained 
with the aid of the “limiting” sphere (inscribed in the cylinder) the straight 
line 7 ^ 3  is tangent to the curve h'7'2'c'.
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Figure 412 shows the intersection of two cones of revolution. The 
intersection of their axes forms a common (for these cones) plane of sym
metry parallel to the V plane.

In this case we use auxiliary spheres described from one and the same 
centre located at the point O where the axis of the cones intersect. For 
instance, to find the point 7, a sphere of radius r is constructed.

The points e[ and e'2 on the vertical projection which are the nearest 
to the cone with a vertical axis are determined with the aid of a sphere 
inscribed in this cone*.

The points f± and / 2 which separate the horizontal projection into visible 
and invisible portions are determined with the aid of a plane T  passing

*The line of intersection of two second-order surfaces having a common plane of 
symmetry is projected on a plane parallel to the plane of symmetry into a second-order 
curve. In the present case a hyperbola is obtained with the points e[ and e2 as its vertices. 
In Figure 411 the vertical projection of the line of coupling of the surfaces is a parabola 
(see Sec. 65).
19-23012
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Fig. 413
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Fig. 414

through the axis of the cone. This is an example illustrating how in one and the 
same construction two different methods are used, namely, the method of 
auxiliary cutting planes and the method of auxiliary cutting spheres.

Figure 413 demonstrates the coupling of the surfaces of two solids of 
revolution: a conical and one with a curvilinear generatrix. Auxiliary spheres 
are used here. We determine the projections of the required points first on 
the V plane and then on the H plane. For instance, point 5 on the horizontal 
plane is determined on a circular arc of radius oa = o'a' described from 
point o; point 51 is obtained on the arc of radius oa\ = o[a[. The point with 
the projections 4' and 4 is found with the aid of the sphere inscribed in the 
surface of revolution with a curvilinear generatrix.

The points on the profile plane are found in a usual way as the third 
projection by two determined on the vertical and horizontal planes of pro- 
jection. To save space, all the views of Fig. 413 are given incompleted.

The example given in Fig. 414 makes it possible to establish the advantage 
of the method of auxiliary spheres over other methods as applied to the 
given case. It is required to construct the projections of the line of coupling 
the surfaces of a cone of revolution and an annular torus (Fig. 414 represents 
half the torus). The left-hand part of the drawing shows the use of auxiliary 
planes parallel to the axis of the cone. These planes cut the conical surface 
in hyperbolas which we have to plot point by point, and the torus in semi-
19*
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circles of radii o\a and oiai. For instance, on constructing on the vertical 
projection a hyperbola (the line of intersection of the conical surface by 
a plane P), we strike a circular arc of radius o[a' = oxa9 find the points k' 
and m' on the vertical projection and then the horizontal projection 
k  and m.

We have to construct a number of hyperbolas which complicates the 
solution and reduces the accuracy. The planes perpendicular to the cone 
axis are also inconvenient, since they will cut the torus surface in curves. 
To construct each of these curves, we would have to find a number of 
points (see Sec. 58). The planes passing through the vertex of the cone are 
also no good, since they cut the surface of the torus in curves to be plotted 
point by point.

The construction becomes simplified and more accurate with the use of 
auxiliary spheres whose centres lie on the axis of the cone. The spheres 
should be chosen so as to cut the torus in circles. It is done in the following 
way.

Let us take a plane Pi passing through the axis of the torus and per
pendicular to the vertical plane. It will cut the torus in a circle of radius 
le  1 with centre at point L This circle is projected on the vertical plane into 
a line segment. Where must the centres of the spheres which may be drawn 
through this circle be located? Obviously, they lie on a straight line passing 
through the centre of circle 1 and perpendicular to the plane Pi. On the 
vertical projection this straight line is represented by a line lei perpendicular 
to Pi (and, hence, tangent to the axial circle of the torus shown in the drawing 
with a long-chain line).

Thus, we have to construct a sphere whose centre must lie, firstly, on 
the axis of the cone, and, secondly, on the straight line lei. Such a centre 
Ci is quite determined by these two lines, and we may construct a sphere of 
radius Ciei and ci as centre; shown on the vertical plane is a portion of the 
projection of the sphere, i.e. an arc of a circle. The intersection of the sphere 
with the cone is a circle which is projected into a line segment passing 
through the point b±; and the torus is cut in the above indicated circle 
projected into a line segment on the trace Piv. The intersection of these 
straight lines yields a point /' which is the projection of one of the points 
belonging to the required line.

Analogously, we find the point n' with the aid of the plane P2 and the 
points 2, c2, b2, e2. To construct the horizontal projections of these points, 
we may use the parallels of the conical surface, as is shown for the points 
/ and n.

We may suppose that the lines Cil and c22 are the axes of some cylinders 
whose normal section coincides with the normal section of the torus. If we 
take points 1 and 2 situated quite close to each other and imagine that such 
points are numerous, and, hence, there are many axes drawn through these 
points, and thus there are many cylinders, then the surface of the torus 
will turn out to be replaced by cylindrical surfaces arranged in succession. 
Therefore the problem is reduced to finding the points common to the
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conical surface and to the surface of each 
“instantaneous cylinder”*. The axes of “in
stantaneous cylinders” intersect the axis of 
the cone at points which are taken for the 
centres of auxiliary spheres cutting the cone 
and “instantaneous cylinder” in circles. The 
projections of these circles on the vertical 
plane represent segments of straight lines.
The circles in which the auxiliary spheres 
cut the “instantaneous cylinders” are the 
normal sections of the torus with which we 
began the construction.

Figure 415 represents (partially) two cones 
of revolution with a common vertex S  and 
shows the construction of the generating ele
ment along which the conical surfaces inter
sect. One point of the required element is 
known: this is the vertex S. The second point 
is found by making use of an auxiliary sphere 
with the point S  as centre. This sphere inter
sects the conical surfaces along circular arcs
whose radii are equal to ol or o 'l ' and or respectively. The ver
tical projection of these arcs intersect at point m \ and horizontal ones at 
point m. The points m ' and m are the projections of the point M —the 
second point for the required generating element.

Such a construction was used in Fig. 401.

Sec. 65. Projecting the Line of Intersection 
of Two Second-order Surfaces of Revolution on a Plane Parallel 

to Their Common Plane of Symmetry

In a number of cases we come across intersections of two algebraic 
second-order surfaces of revolution. The line of intersection obtained is a 
space curve of the fourth order called biquadratic.

It was stated in the footnote on page 289 that the line of intersection of 
two second-order surfaces having a common plane of symmetry is projected 
on a plane parallel to the plane of symmetry into a second-order curve. 
Figure 412 to which this footnote referred represented two cones of revolu
tion with intersecting axes which defined a common (for these cones) plane 
of symmetry parallel to the vertical plane. The vertical projection of the 
biquadratic curve thus obtained represented a hyperbola.

*We resort to this expression in order to stress the substitution of the surface of the 
torus by numerous cylindrical elements. In practice, only a few of such constructions are 
accomplished.
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Figure 416 gives the vertical projection of two cylinders of revolution of 
different diameters {Cl 1 and Cl 2). Point o' is the vertical projection of the 
point of intersection of the axes of the cylinders. The vertical projection of 
the biquadratic curve obtained represents an equilateral hyperbola (one of 
its branches) with centre at the point o'. The construction is carried out with 
the aid of spheres having a common centre at the point of intersection of the 
axes of the cylinders. The sphere inscribed in the cylinder of greater diameter 
(Sph 1) enables us to find point 1 representing the vertex of the hyperbola. 
Spheres with greater radii yield other points of the required projection of the 
curve (for instance, the sphere Sph 2 gives point 3). If the radius is greater 
than the line segment o'2, then points are obtained (for instance, 4) outside 
the area occupied by the projection of both cylinders.

Figure 416 shows the asymptotes of the constructed hyperbola; they 
pass through the point o' and are mutually perpendicular. These asymptotes 
preserve their sense for all the hyperbolas obtained in Fig. 416 if we take, 
for instance, cylinders of different diameters with a vertical axis {Cl 4, Cl 5). 
But if the cylinders are of equal diameters (say, Cl 1 and Cl 5), i.e. these 
cylinders have a common inscribed sphere (Sph 1), then the vertical projec
tion of the line of intersection in Fig. 416 (see also Fig. 404) represents two 
straight lines intersecting at right angles, whose positions (for instance, 
o'2 \) correspond to the positions of the asymptotes.

If the axes of the cylinders intersect at an acute angle (as in Fig. 417), 
then the projection of the line of intersection under the same conditions as 
in the case considered previously represents also an equilateral hyperbola. 
The points for this sphere are constructed using the method of auxiliary
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spheres, and in this respect there is no difference between the cases depicted 
in Figs. 417 and 416. We draw the reader’s attention only to the fact that 
point 4 obtained with the aid of the sphere inscribed in the greater cylinder 
(Sph 1) is no longer the vertex of the hyperbola as it was in Fig. 416.

Let us now follow the peculiarities of the construction shown in Fig. 417. 
To determine the positions of the asymptotes, a rhombus 5-6-7- 8  is construct
ed whose sides are tangent to a certain circle and parallel to the generatrices 
of the cylinders. The diagonals of this rhombus indicate the directions of the 
asymptotes. Hence the asymptotes are mutually perpendicular which means 
that the hyperbola is equilateral.

Drawing the bisector of the angle between the asymptotes, we get the 
real axis of the hyperbola whose vertex must lie on this axis (point 7). To 
find this point, we carry out the following construction: taking an arbitrary 
point of the hyperbola, say, point 4±9 we draw through it a perpendicular to 
the conjugate axis of the hyperbola and mark points 9 and 10 at which this 
perpendicular intersects the conjugate axis and asymptote. Then we describe 
a circular arc of radius 9-4i to intersect (at point 11) the perpendicular 
drawn from point 10 to the line 9-4±. The obtained line segment 10-11 
represents the distance from o' to 7, i.e. to the vertex of the hyperbola, or 
in other words, its semitransverse axis.

The line of intersection of the surfaces of revolution represented in Fig. 
418 is projected on the V plane parallel to the common plane of symmetry 
of these surfaces into a hyperbola (its asymptotes are parallel to the diagonals 
1-3 and 2-4 of the trapezoid whose sides are respectively parallel to the gen
eratrices of the given surfaces and touch a circle). Moreover, in this case there
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is a plane of symmetry perpendicular to the axis of the conical surface. It is 
horizontal and passes through the axis of the cylinder. The projection of the 
line of intersection of the surfaces under consideration on this plane must 
be a second-order curve. We obtain a closed curve with two mutually per
pendicular axes of symmetry, that is an ellipse. Its semimajor axis ob is 
equal to the line segment fc'5, the semiminor axis (oa) being equal to the 
line segment a'6 , i.e. to the radius of the parallel of Sph. 1 on which point 
A is located.

The hyperbola obtained in Fig. 418 is not an equilateral one, since its 
asymptotes form angles not equal to 90°. The same in Fig. 419 where also a 
hyperbola is constructed representing the projection of the line of inter
section of a cylinder with a conical surface; the hyperbola is not equilateral* 
This is characteristic for the cases of mutual intersection of a conical and a 
cylindrical surfaces of the second order having a common plane of symmetry 
when the line of intersection is projected on a plane parallel to the plane of 
symmetry.

In Figure 419 the centre of auxiliary spheres is located at point 0 whose 
vertical projection is found at the point of intersection of the axes of a conical 
and cylindrical surfaces. The sphere inscribed in the conical surface (Sph 1) 
enables us to obtain the position of the transverse axis, centre and vertices
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of the hyperbola. The asymptotes are determined as the diagonals of the 
trapezoid 5-6-7- 8  in which the sideS 5-6 and 7-8 are parallel to the generatrix 
o f the cylinder and touch the circle “Sph 7”.

Thus, in Figures 416 and 417 the projections of the line of intersection 
represent an equilateral hyperbola; in Figs. 418 and 419 we also obtained 
hyperbolas but non-equilateral. A non-equilateral hyperbola is also obtained 
in the case shown in Fig. 420 where the projection of the line of intersection 
of two conical surfaces of revolution is constructed. Here the sphere (Sph 1) 
inscribed in the cone with a greater vertex angle enables us to get the position 
of the transverse axis, the centre and vertices of the hyperbola. The asymp
totes are constructed as the diagonals of the trapezoid 4-5-6-7.

An analogous case was demostrated in Fig. 412 representing two pro
jections of two cones with mutually perpendicular intersecting axes.

Do we always get the projection of the line of intersection of two conical 
surfaces in the form of a non-equilateral hyperbola? No, we do not. If the 
vertex angles of the cones represented in Figs. 412 and 420 are equal to each 
other, then the hyperbola obtained as the projection of the line of intersection 
o f two conical surfaces of revolution with intersecting axes on a plane paral
lel to these axes will turn out to be equilateral.

Tabulated below are the findings on projecting the line of intersection of 
two second-order surfaces of revolution with intersecting axes on a plane 
parallel to these axes borrowed from Glazunov’s study.

The projection Surfaces of revolution
obtained without any special conditions with additional conditions

Hyperbola Cylindrical 
Conical 
Paraboloids 
Hyperboloids 
Prolate ellipsoids

in any 
combina
tion

Both surfaces are oblate ellipsoids

Equilateral
hyperbola

Both surfaces are cylin
drical

Both surfaces are parabo
loids

A cylinder and a pa
raboloid

Both surfaces are conical with equal 
vertex angles

Both surfaces are hyperboloids 
with equal angles at the vertices 
of their asymptotic cones 
A cone and a hyperboloid with equal 
angles at the vertices o f the cone and 
asymptotic cone of the hyperboloid 
Both surfaces are ellipsoids, but similar 
ones

Let us return to Fig. 411 which represented the construction of the 
vertical projection of the line of coupling of the surfaces of a cylinder of 
revolution and a sphere. The common plane of symmetry of the surfaces 
defined by the cylinder axis and the centre of the sphere is parallel to the V
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plane. Therefore the vertical projection of the line of coupling of the given 
surface represents a second-order curve. In the case under consideration it is 
a parabola with the vertex at the point b'.

Figure 421 shows the construction of a parabola which represents the 
projection of the line of intersection of a sphere and a cylinder. Obviously, 
points 2 and 3 (and ones symmetrical to them) belong to the required pro
jection. Point 4 is constructed with the aid of a circle described from the 
point o'. This circle is the principal meridian of the sphere (Sph 2) whose 
centre is located on the cylinder axis at the point O.

To construct point 1 (the vertex of the parabola), an auxiliary sphere 
(Sph. 1) is taken. The point is found as the intersection of the line 6-7 with 
the projection of the parabola axis. The Soviet scientist E.A. Glazunov 
established that the parameter of the parabola is equal to the distance be
tween the points o' and c'. Laying off half the length of this segment on both 
sides of the parabola vertex on its axis, we get points 8  and P. The directrix 
of the parabola passes through the point 8 , its focus being located at the 
point P. Using the found directrix and focus, we may now construct the 
points of the parabola.

If the diameter of the cylinder intersecting the sphere is equal to its 
Tadius, and the generatrix of the cylinder passes through the centre of the 
sphere (Fig. 422), a biquadratic curve is obtained which is called the curve 
of Viviani*. Its vertical projection is a parabola.

The projection on a plane parallel to the other plane of symmetry (see 
the right-hand drawing of Fig. 422), i.e. on the H plane in the present case, 
coinciding with the projection of the cylinder, represents a circle, i.e. a 
second-order curve. This conforms to the general rule formulated at the 
beginning of this section.

* Vincenzo Viviani (1622-1703), mathematician and architect, pupil o f Galileo. Viviani 
used this biquadratic curve for windows in a spherical dome.
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Each diametral plane of the sphere is a plane of symmetry. If a second- 
order surface of revolution intersects a sphere whose centre is contained in 
the plane of symmetry of this surface, then the line of intersection is project
ed on a plane parallel to the plane of symmetry into a curve of the second 
order. We have come across this event in Figs. 418 and 422. If we constructed 
the horizontal projection in Fig. 421, then the curve of intersection of the 
cylinder with the sphere would be projected into a circle which is also ob
vious as in Fig. 422. Still earlier, in Fig. 398, the vertical projection of the 
curve of intersection of a cone with the surface of a hemi-sphere represented 
a parabola, and the profile projection an ellipse. We have to imagine the 
second hemi-sphere and the second cone in the same relative positions as in 
Fig. 398, and to bring both hemi-spheres together to form a sphere. The 
plane of contact will then appear as a pronounced plane of symmetry parallel 
to the W  plane, and the curve on W  as an ellipse. Figure 399 also illustrated 
the parabola and ellipse as the projections of a line of intersection.

The below table indicates in what cases the intersections of two second- 
order surfaces of revolution with intersecting axes are parabolas and ellipses 
obtained as the projections of the line of intersection on planes parallel to 
the plane of symmetry of these surfaces*.

The projection obtained Surfaces of revolution

Parabola A sphere with a cylinder, cone, paraboloid, hyper
boloid, ellipsoid

Ellipse An oblate ellipsoid with a cylinder, cone, paraboloid, 
hyperboloid, prolate ellipsoid

♦Borrowed from the mentioned study.
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Knowing for sure what line is to be obtained as a result o f the construction, 
in a number of cases we may take advantage ofjhe geometric properties o f 
these lines which simplifies the constructions involved and makes it possible 
to get more accurate results.

QUESTIONS TO SECS. 63-65

1. What are the lines of intersection of (a) two cylindrical surfaces whose 
generatrices are parallel to each other, (b) two conical surfaces with a com
mon vertex?

2. How do we construct the generatrices of a ruled surface called a cylin
der with three directrices if two of them or all three are curved lines?

3. What lines are yielded by mutual intersection of two surfaces of revo
lution circumscribed about a common sphere or inscribed in a sphere?

4. What are the lines of intersection of coaxial surfaces of revolution?
5. In what cases is it possible and advisable to make use of auxiliary 

cutting spheres?
6. What curve is called biquadratic?
7. Into what line is a biquadratic curve projected on a plane parallel to a 

common plane of symmetry of two intersecting surfaces of the second order?
8. What second-order curve is the projection of the line of intersection 

of two cylindrical surfaces on a plane parallel to a common plane of sym
metry of these surfaces?

9. In what case the projection of the line of intersection of two conical 
surfaces having a common plane of symmetry parallel to the plane of pro
jection is an equilateral hyperbola?

10. What curve may represent the projections of the line of intersection 
of the surfaces of a cylinder and a cone of revolution with a sphere if they 
have a common plane of symmetry?

Sec. 66. Examples Illustrating the Construction of 
the Line of Intersection of Two Surfaces

Considered below are several examples illustrating the use of the con
struction methods discussed in the previous sections as also some special 
methods suitable for constructing the points of the required line of inter
section of surfaces occupying particular positions.

In Figure 423 the projection of the line of intersection on the H  plane 
coincides with the circle representing the projection of the cylinder with a 
vertical axis, and on the W plane with the semicircle which is the projection 
of the cylinder with a horizontal axis. Finally, we have to find the points 
with the aid of which it is possible to construct the projection of the required 
line on the V plane (hyperbola with the vertex at point b').



302 DESCRIPTIVE GEOMETRY

Fig. 424
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Obviously, the projection b' is determined directly by the projection 
and, for instance, the projection d' is determined as the point of intersection 
of the lines of recall drawn from the points d and d" coordinated by the 
distance / from the axes of the horizontal and profile projections.

The projection c' is also determined by the coordinated projections c and 
c". As is clear, there is no need here to pass auxiliary planes or spheres.

In Figure 424 the projections b\ d \ e' are constructed with the aid of the 
profile projections fc", d '\ e" which enable us to find the vertical projections 
of the elements of the oblique cylinder and the projections b\ d \ and e\ 
Once the projections b’\  d '\ e '\ a\ b\ c \ d \ e' are determined, we can find 
the projections b, c, d, e.

In the case demonstrated in Fig. 425 the points for the vertical projections 
of the lines along which the oblique cylinder intersects the surface of the 
cylinder with a vertical axis are found proceeding from the positions of the 
horizontal projections of these points. We have only to construct the vertical 
projections of the corresponding elements of the inclined cylinder. Of points 
marked in Fig. 425, the following ones are regarded as reference points: 
V and 5' are the nearest points to the axis of the vertical cylinder on the
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visible and invisible portions of the vertical projection of the right-hand line 
-of intersection, respectively; 3' and 3' are the uppermost and lowest points 
•{respectively) on the extreme elements of the inclined cylinder; 4' and 4' are 
the points separating the projection of the extreme element of the vertical 
cylinder from the projection of the curve. These points correspond to their 
counterparts on the left-hand curve.

Figure 426 shows a cylinder intersecting the surface of a cone. In this 
case the points 7', 2', . . . ,  6' are constructed from the points 7, 2, . . . ,  6  of 
the horizontal projection of the line on the conical surface. For instance, 
points 4' and 4[ are obtained on the vertical projection of the parallel of 
radius o4, and the point 3' on the vertical projection of the parallel of radius 

‘03 .
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The vertical projection of the line of intersection of a cylindrical surface 
and a cone (see Fig. 427) is constructed with the aid of initial points taken 
on the profile projection of the cylinder. Points 7", 5", 4", 6 ", 8 " enable us 
to immediately find the reference points 7', 3\ 4\ 6 \  and 8 ' for the vertical 
projection. Other points can be found with the aid of generating elements. 
For instance, taking the projection s'c' of the element on which the projection 
5" must lie, we find, using the line segment /, the point c and the projection 
s"c" 9 and then s'c'. What is left is to get the projections 5' and 5.

In Figure 428 the vertical projections of the points of the line along which 
the cylinder cuts the surface of a hemi-sphere can be found from the horizon
tal projections on the corresponding parallels of the sphere. For instance, 
using the point k , we determine the parallel of radius ok and on its vertical 
projection find the projection k '. The same is shown for the points A and F. 
But, of course, for the points A and F, proceeding from the positions of their 
horizontal projections a and / ,  we may take a cutting plane T  parallel to F, 
and find the projections a' an d /' on the semicircle in which the plane T  cuts 
the surface of the hemi-sphere. Obviously, in most cases it is expedient to 
vary the methods for constructing the points belonging to the projections 
of the lines of intersection, choosing the most convenient methods in order 
to get simple and accurate constructions.

In Figure 428 the projections b' and e' are found on the principal meri
dian directly using the points b and e. We could also find the projections d' 
and g' if we had the profile projection. Now, with the profile projection ab
sent, we can find the points d' and g' in the same manner as, for instance, 
the projections a' and / ' .

The projections a, fc, c, etc. marked in Fig. 428 determine the reference 
points for the vertical projection of the curve and for the profile projection 
if it is to be constructed: k' and m! are the lowest and uppermost points re
spectively; at points b' and e' the principal meridian is “discontinued” on 
the sphere and at points a' and / '  the line of intersection is separated into a 
visible and invisible parts; the points d \ g \ c \ h \ being of no special impor
tance for the vertical projection, enable us to construct the reference points 
on the profile projection of the curve.

Figure 429 represents a solid of revolution with a cylindrical hole made 
in it. The curve k’a'b'm' is constructed, using the points fc, a, h, m, i.e. the 
known horizontal projections. For instance, taking the point a, we construct 
the projection of a parallel on the surface of revolution, and find the pro
jection a! on the vertical projection of this parallel.

To construct the vertical projection of the line of coupling of an annular 
torus and a cylinder (Fig. 430) we use the horizontal projections o f the 
points (in the same way as in Fig. 429). For instance, knowing the position 
of the point h, we can draw on the surface of the torus circular arcs of radii 
o2  and o2 x and obtain points V  and b[ on these arcs. Here a system of circular 
sections of the torus surface is used.

In Figure 431 we also take advantage of the fact that the positions of the 
points of one of the projections of the required line are known. This enables
20-23012
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Fig. 429
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Fig. 431
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Fig. 432
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us to construct the points belonging to the other projections. In the left- 
hand drawing of Fig. 431 a corner point (point o f break) is obtained on the 
horizontal projection.

The construction of the vertical projection of the curved line of inter
section of a conical and cylindrical surfaces represented in Fig. 432 could be 
carried out, for instance, in the manner shown in Fig. 419, i.e. with the aid of 
spheres with the point C as centre. On constructing the hyperbola, we can 
construct the horizontal projection of the curve with the aid of elements of 
the cylinder; for instance, the element on which point E  is located is deter
mined by the line segment /i.

Figure 432 shows another method of construction which consists in 
projecting on an additional plane, in the present case on a vertical projecting 
plane perpendicular to the axis of the cylindrical surface. The line of inter
section is projected on this plane in the form of an arc on the semicircle 
representing the projection of this surface. Taking points on the arc, we can 
construct their horizontal and vertical projections. For example, taking the 
point et9 we determine the line segment / 2 on the semicircle of radius R repre
senting half of the parallel on the cone. Laying off the line segment / 2 (as is 
shown in the drawing) on the vertical projection, we get the projection e' on 
the line of recall with the projection et.

Figure 432 also shows the development of the lateral surface of the frus
tum of a cone considered in this problem. The procedure of its construction 
is as follows: We construct the projection of the cone vertex (point $'); 
revolve the circumference of the upper base of the cone to occupy the posi
tion in which it is parallel to the vertical plane, and divide it into several 
parts (the drawing gives half of this circle). Projecting the points g2, gs9 etc. 
on the straight line g[glj, we draw through these projections and through s' 
the projections of the elements to meet the projection of the line of inter
section of the surfaces; for instance, s'k ' is drawn through £3 .

On constructing the development of the lateral surface of the cone, we 
lay off the lengths of the segments of the corresponding elements. For 
instance, finding (by the method of revolution) the length of the segment of 
the element G^K, we lay it off on the corresponding element on the de
velopment.

Constructed in Fig. 433 is the line of intersection of a quadrangular 
prism with a cylinder and the development of the obtained portion of the 
prism.

Each face of the prism cuts the cylindrical surface in an ellipse. The 
ellipses thus obtained intersect one another at points which are the points of 
intersection of the faces of the prism with the cylindrical surface. The 
vertical projections of the mentioned points are determined by their profile 
projections. For any point E  we determine the horizontal projection e by 
its profile projection e". Knowing the projections e" and e9 we find e'. 
Points a' and b' are determined by the horizontal projections of the points A 
an d B.

To construct the development of the prism, we divide the horizontal
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Fig. 433

projection of the prism into line segments, taking an equal number of divi
sions on each face. This division corresponds to the division of the cylindrical 
surface within the area of its intersection by the prism.

Figure 434 represents the construction of the line of intersection of a 
pyramid with a cylinder and the developments of both surfaces.

The lines of intersection are ellipses which intersect one another at the 
points where the edges of the pyramid cut the surface of the cylinder. The 
point V may be constructed in the way shown in the drawing, i.e. without 
the aid of the profile projection.

To construct the developed surfaces of the pyramid and cylinder, the 
circle on the horizontal projection of the cylinder is divided into twelve 
equal parts. The points belonging to the ellipses are found by drawing auxil
iary straight fines through the vertex of the pyramid on the development of
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the pyramid surface (for instance, the line SG). The lengths of the segments 
of these lines (say, El) are determined by revolving them to the position 
parallel to the V plane.

An example of construction of the line of intersection of a prism with a 
sphere and the development of the surface of the prism is given in Fig. 435. 
The faces of the prism cut the spherical surface in circular arcs. The projec
tions of these arcs on the H  plane are parts of ellipses. The projection of the 
line of intersection on the V plane consists of parts of ellipses, circular arcs 
(since two faces of the prism are parallel to the V plane), and a straight line. 
We find the points of intersection of the edges of the prism with the sphere. 
Then we have to mark the points belonging both to the line of intersection 
of the prism with the sphere and to the principal meridian of the sphere. 
The plane determining the principal meridian cuts the prism along a straight 
line on which the mentioned points must be located. The drawing shows 
the development of the prism. The curve on the development is made up 
of circular arcs. Some of the radii for striking these arcs are taken from the 
vertical projection (/?2, Rz* R*)> the other are found with the aid of an addi
tional projection (Ki and Rs).
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Sec. 67. The Intersection of a Curved Line with 
a Curved Surface

To find the points of intersection of a curved line with a curved surface, 
it is necessary to pass an auxiliary surface through the curved line, to con
struct the line of intersection of the auxiliary and the given surfaces, and to 
find the points of intersection of this line with the given curved line.

Let us consider several examples of intersection of a space curve (a curve 
of double curvature) with a curved surface.

1. Figure 436 shows the construction of the point of intersection of a 
curve AB with a cylindrical surface specified by the horizontal trace MN  and 
the direction of the generatrix NP.

Through the curve AB we pass an auxiliary cylindrical surface whose 
elements are parallel to NP. With the elements so directed, the line of inter
section of both surfaces will be an element common to them. We then 
construct the trace of the auxiliary cylindrical surface on the H  plane 
(the curve A0B0). The intersection of the curves MN  and AoB0 yields a
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point K\ through which the line of intersection of the surfaces (their common 
element) passes. This element intersects the given curve AB at point K  which 
is the required point of intersection of the line AB with the given cylindrical 
surface.

2. Figure 437 illustrates the construction of the points of intersection of 
a curve AB with a conical surface. Through the curve AB we pass an auxiliary
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conical surface whose vertex coincides with the vertex S  of the given cone. 
The intersection of the two conical surfaces so arranged yield straight lines 
serving as common elements to both surfaces (see Sec. 63).

We construct the traces of the given and auxiliary conical surfaces. The 
intersection of these traces yield points K0 and Mo which determine the 
elements SK0 and SM 0• These elements intersect the curve AB at points 
K  and M  which are the required points of intersection of this curve with the 
given conical surface.

3. Figure 438 demonstrates the construction of the points of intersection 
of the curve AB with the surface of an annular torus. Through the curve 
AB we pass an auxiliary cylindrical surface whose elements are perpendicular 
to the H  plane. We then find the line of intersection of this surface with the 
given surface for which purpose we pass a number of planes cutting the given 
surface in parallels. Since the elements of the auxiliary cylindrical surface 
are perpendicular to the H  plane, the intersections of the horizontal pro
jections of the parallels and ab yield points (7, 2,5, . . . )  which are the hori
zontal projections of the points determining the line of intersection of the 
given and auxiliary surfaces. Constructing the vertical projection of this line, 
we get the projections k2, and then the projections k l9 k2.

QUESTIONS TO SECS. 66-67

1. Indicate the methods used for the construction of the projections of the 
line of intersection of two surfaces.

2. How can we use the case when one of the projections of the line of 
intersection coincides with the projection of a cylindrical surface?

3. How should one proceed if it is required to find the point (points) of 
intersection of a curved line with a curved surface? In particular, if a curve 
intersects a cylindrical or conical surface?



CHAPTER 11

THE DEVELOPMENT 
OF CURVED SURFACES

Sec. 68. The Development of Cylindrical 
and Conical Surfaces

The development of the lateral surface of a right circular cylinder was 
shown in Fig. 305. The base of the obtained rectangle is then equal to the 
developed circumference (red), and its altitude to the altitude of the cylinder. 
Figure 362 represents the development of the surface of a right circular 
cylinder cut by a plane in an ellipse. Its lower base is a circle which is a nor
mal section of the cylindrical surface of revolution. The circle is developed 
into a straight line which is divided into a certain number of equal parts 
corresponding to the division of the circle in Fig. 361. Then the scheme for 
developing the surface of a prism is applied. The cylindrical surface is re
placed here by the surface of a prism inscribed in it. The edges of the prism 
are equal to the segments of the elements of the cylindrical surface. Thus, 
we resort here to the method of approximation widely used in various 
branches of mathematics.

Theoretically, the more faces the prism inscribed in the cylinder has, the 
more exact is the development of the cylindrical surface. And the smaller is 
each of the segments of the polygonal line bounding the development 
of a prismatic surface, the more exact is the corresponding approximation.

The conical surface is developed in the general case according to the 
scheme for developing the surface of a pyramid. In Figure 308 the lateral 
surface of a right circular cone was developed using the construction known 
from solid geometry. The angle of the sector representing the required devel-

Ropment is computed according to the formula cp = -^--360°, where R is
the radius of the base circle of the cone, and L  is the length of its generatrix.

Let us consider the construction of the development of the lateral surface 
of an oblique cone with a circular base (see Fig. 439).

The circle of the base is substituted here by a polygon whose sides are 
AiA2, A 2Az, and so on, and the conical surface by the surface of a pyramid
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Fig. 439

with triangular faces SAiA2, SA 2A3, etc. The development of this surface 
represents the sum of these triangles.

On having determined (by the method of revolution) the length of the 
line segment SAi (segment s'Aoi) and the length of the segment SA 2 (segment 
s'A02) 9 we construct a triangle by its three sides s'Aou s'Ao2 and aia2 (the 
chord), then a second triangle s'Aq2Ao3 for which purpose we determine the 
length of the segment SA 3 (segment s'Aq3) and take the chord a^a 3, and so on. 
Proceeding in such a way we obtain the points Ao 1, A ()29 etc. through which 
we draw a smooth curve.

If it is required to find on the development a point specified on the 
surface, for instance M  (m \ m), proceed as follows: draw through this 
point an element s'k '9 sk, find its position on the development (s'K0), and 
lay off on s'K0 a segment s'M0. To construct the segment s'K0 on the de
velopment we have to intersect the curve ̂ 01^ 0 2^ 0 3 . • • with an arc of a circle 
of radius ajk described from A 03 as centre, and to draw a straight line 
through the point K0 thus obtained and point s'. Furthermore, the line seg
ment s'Mo represents the true length of the segment s'm\ sm after the latter 
is revolved to the new position s 'ly sL We finally get s'Mo =  s'l'.
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Fig. 441
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We may also formulate an inverse problem: Construct the projections 
of a point M  specified on the development (M o ) . In this case we begin 
with drawing through the point M 0 the line segment s'K0- Then we find 
point k on the base circle of the cone bearing in mind that ^ 0 3 ^ 0  is equal to 
ask. On having constructed the projections sk and s'k' of the generating 
element, we find the projections of the line segment SM  for which purpose 
we revolve SK  to a position enabling us to project it without distortion 
(for instance, parallel to the V plane), lay off in this position the length 
s'Mo of the segment (s'T = *s'M 0) , and return it to the initial position.

Figure 440 shows the development of the lateral surface of a frustum of 
a cone when the frustum cannot be completed to a full cone.

In this case we construct an auxiliary cone similar to the given one. 
It is advisable to choose the diameter d of the base of the cone so that the
ratio is expressed by a whole number (k). An auxiliary cone may be
constructed as is shown in Fig. 440, or outside the frustum.

Now we construct the development of the lateral surface of the auxiliary 
cone—the sector S 0A 0A0 i: an arbitrary point K  is chosen, rays KA0, K l0, 
K2q, K3o are drawn through the points of division on the arc A0A0 i, and on 
them the following segments are laid off: KA± = k-KA0, K l\ — k*Kl0,
K2\ = A>A70, K3i = k*K30, where k = ^ . Then, through the points A 1 ,
/ 1, 2 1 draw straight lines respectively parallel to S 0Ac, .So/o, *So2o and lay 
off on them the segments A\A 2 = /, I 1I 2 = U 2i22 = /. The segment 
3±32 — I is laid off in the same way. Finally, draw smooth curves through 
the points Au 7i, 21, 5i and through the points A2, 72, 2 2, i 2.

The second half of the development may be constructed in the same way 
or taking advantage of the symmetry about the axis Soil.

Figure 441 demonstrates an alternate version of constructing the devel
opment suggested by K. Beschastnov. Here, as in Fig. 440, an auxiliary
cone is also taken (in Fig. 441 the ratio-— is equal to three), and its devel
opment is constructed (half of it is shown in the drawing). Then, from the 
point K0 several rays are drawn through the points A0, 70, 20, . . . ,  and a 
straight line KoM is constructed at an angle of ^ 4 5 °  to KqA\. On this line 
points L  and M  are taken so that KqM : K0L  is equal to three (i.e. to the 
taken ratio of D and d). Now segments LA0, L70, L20, . . .  are constructed, 
and through the point M  straight lines MAu M7i, . . .  are drawn parallel 
to LA0, L70, . . . ,  respectively. The intersection of these lines with the rays 
KoA0, Koh, Ko2 o, . . .  yields points A u h ,  21, . . . ,  through which A\A 29 
7i72, . . .  should be drawn parallel to SoA0> Soh , . . . ,  respectively, and 
AxA 2 = /, 7i72 = /, etc. and also K0B0 =  / laid off.

To complete the development draw smooth curves through the points 
A 1, 7i, 2i, . . . ,  and A2, 72, 22, . . .  with the aid of a French curve, and 
construct the second half of the development which is symmetrical to the 
first about the line SqK0 .
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Sec. 69. The Development of the Sphere

A spherical surface is undevelopable (see Sec. 49, item 5). Existing meth
ods for constructing its development yield only approximate results. In 
other words, we may speak here of a conventional development.

Figure 442 shows one of the methods for constructing such a develop
ment.

1. The surface is “cut” by planes passing through the axis of the sphere 
OOi (for instance, in Fig. 442 into 12 equal parts, the vertical projections of 
the lines of intersection are not shown).

2. On the H  plane the arcs between the points of division are replaced 
by straight lines tangent to the circle (for instance, the arc k\6 h  is replaced 
by the line segment mri).
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3. Each portion (or element) of the spherical surface is replaced by a 
cylindrical surface of revolution with the axis passing through the centre of 
the sphere parallel to the tangent line to the great circle (the radius of the 
cylindrical surface is equal to the radius of the sphere).

4. The arc o'6 'o[ is divided into equal parts: o' 1' =  7'2' = 2'3', etc. 
(in the drawing the arc o'6 ' is divided into six equal parts).

5. Points 1', 2', etc. are taken for the vertical projections of the segments 
of generating elements of the cylindrical surface with the axis parallel to 
the line segment mn, and their horizontal projections ab, cd, etc. are con
structed.

6 . On a straight line passing through the points M 0 and No MoN0 = mn 
is laid off, and a perpendicular is drawn to the segment MoNo through its 
midpoint.

7. The line segments 6 0Oo = 6 oOio respectively equal to the arcs o'6 ' 
and 6 'o[ (i.e. 2 tcR  : 4) are laid off on this perpendicular.

8 . These segments are divided into parts respectively equal to the arcs 
o'l', 1 '2 ', . . . ,  and through the points 70, 2 0, etc. straight lines are drawn 
parallel to MoNo, and AoBo =  ab, CoDo =  cd, etc. are laid off on them.

9. Through the points O0, Ao, C0, . . and through the points O0, B0, 
D0, . . .  curves are drawn with the aid of a French curve.

As a result, an approximate development of one element of the sphere 
(called a gore) is obtained.

If it is required to plot a point, say S  (s', s), on the development, then 
proceed as follows: first draw on the horizontal projection a straight line 
ot bisecting the gore containing the projection s, and describe an arc of a 
circle of radius os. Then bring the point s onto the principal meridian and 
find the projection s[. Now lay off on the development of the third gore 
(from its vertex) a line segment equal to the length of the arc o's'i, draw 
through R0 a straight line parallel to MoNo, and construct R0So equal to rs.

Sec. 70. Examples of Constructing the Developments of Some 
Particular Forms

1. The surface represented in Fig. 443 is a combination of the surfaces 
of a prism and an oblique circular cylinder.

To develop the surface of the cylinder we divide the semicircle into equal 
parts by points 1, 2, 3, . . . ,  and pass generating elements through them. 
The vertical projections of these elements are equal to their segments. Now 
we draw through the point V the trace of a vertical projecting plane T 
intersecting the cylinder and thus yielding its normal section. On the line 
4o4o we lay off segments 4oE0, 4oD0, 40C0 equal to the vertical projections 
4'e', 4'd', 4'c', and then draw through Eo, Do, and Co straight lines per
pendicular to the line 4040. Now from 40 as centre we strike an arc of radius 
equal to the chord 4-3 to intersect the line drawn through the point C o ,  

thus obtaining point 3o- From this point as centre we strike once again an 
arc of the same radius intersecting the line drawn through the point D o ,  and
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from the point thus obtained (20) we describe an arc of the same radius to 
intersect the line drawn through the point Eo.

The above considered construction is based on developing the surface 
elements which are projected on a plane in the form of triangles. Consider 
one of such triangles l'k '2f on the V plane. Its leg k'2' represents a segment 
of a generating element projected without distortion, the hypotenuse 1 '2 ' 
represents the projection of an arc of the semicircle, and the leg l'k ' is the 
projection of a portion of an ellipse obtained as a normal section of a given 
cylindrical surface. When developing the given solid, we have to construct 
a right triangle by its leg 2 fk' and the hypotenuse (the chord 1 -2 ).

On having determined the positions of points 70, 20, 30, we draw through 
them and through the point 40 a smooth curve which is taken for the 
development of the circular arc*. Drawing IqIq, 2020, . . . ,  we obtain points

♦Figure 443 represents half of the development.
21-23012
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Fig. 445

for constructing the curve representing the development of the lower arc 
of the circle. At points 10 and 10 we draw straight lines tangent to the con
structed curves. The rest of the constructions is obvious from the drawing.

2. Figure 444 shows the development of the surface of a passage coupling 
two cylinders. This intermediate part is bounded by the surfaces of two 
oblique cylinders of the same type as in Fig. 443, and two planes.
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We begin developing with the line A B :  the triangle AqBqIq congruent 
to the triangle a'b'l' is constructed, and the development of the cylindrical 
surface is attached to it (this development is made analogously to that illus
trated in Fig. 443); then the triangle lohlo  is drawn congruent to the tri
angle 777 ', and so on.

3. Figure 445 shows the development of the lateral surface of a frustum 
of an elliptical cone.

On finding the vertex of the cone (s', s), we divide the upper ellipse by
points 1,2 ____ The elements drawn from the point S  to the points 1,2, . . .
divide the conical surface into parts which are developed into triangles. 
For instance, the portion SCD of the conical surface is developed into the 
triangle SoCoDo in which the sides SoDo and SoCo are equal to the generating 
elements SD and SC (the length of the element SC is determined by the 
method of revolution), while the side CoDo is taken as a line segment equal 
to the rectified arc cd (by dividing it into small parts).

On finding the points C o ,  B o ,  A 0 and those located symmetrical to them 
about the element SoDo, we draw a smooth curve representing the develop
ment of the lower ellipse. We then lay off D o 3 , C o 2 , etc. equal to the lengths 
of the segments of the elements D 3 ,  C 2 ,  etc. to find the curve representing 
the development of the upper ellipse. Given in Fig. 445 is one half of the 
complete development.

4. Figure 446 demonstrates the development of the lateral surface of a 
frustum of an oblique circular cone. The left-hand drawing shows the 
development constructed in the way used in Fig. 445; and the right-hand 
drawing illustrates another method consisting in that the given surface is 
replaced by a polyhedral surface inscribed in it. Using the horizontal pro
jection of the vertex of the cone (point s), we first carry out the division on 
the horizontal projection by drawing straight lines from this point. For 
instance, by drawing sa we get the projection ab of a segment of the generat
ing element. Using the points on the horizontal projection, we obtain the 
division of the vertical projection. Further, we consider, for instance, the 
plane element ACDB, draw the diagonal BC in it, and determine the lengths 
of segments for constructing triangles. One side of each triangle is the chord 
of the corresponding circle of the horizontal projection. The development 
is composed of such triangles; the polygonal lines are replaced by smooth 
curves drawn through the vertices of the polygonal lines.

5. Figure 447 shows the construction of the development of the surface 
of an annulus. The projection represents a bend equal to a quarter of an 
annulus, the development giving the surface of a third of this bend.

A straight line o'a' is drawn which is the axis of symmetry of the projec
tion of the considered portion of the bend, thus determining a circle (the 
normal section) whose development in the form of a straight line DcDo is 
taken for the midline of the figure to be obtained as the development of the 
considered portion of the annulus. Concentric arcs are drawn on this section 
from point o' corresponding to the points of division 1 ,2 ,__ The develop
ment is constructed separately for parts I and II. For the first part we lay
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Fig. 446

off a line segment D0D0 equal to half the length of the circle obtained in the 
normal section, and divide it into parts in accordance with the initial
divisions i, 2 , ----At point A 0 we draw a perpendicular to D0D0 and lay
off on it (on both sides of the point A0) line segments Aq6  and A07 equal to 
the arcs a'a[ and a'a'2. Point B0 is determined in the following way: from 
point b0 on the development we describe an arc of radius equal to the length 
of the arc b'b2, and from point 7 an arc of radius equal to the length of the 
line segment a[L To construct the points C0, Do we proceed in the same 
way.

The development of the surface of part II of the bend is constructed 
analogously.
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6. Figure 448 shows how a sur
face of revolution generated by a 
curvilinear generatrix is developed.

First we divide the surface into 
equal parts by meridians. The draw
ing shows the development of a 
sixth part of the surface.

We draw a chord b'c\ bisect it, 
and through the point of division K 
draw a perpendicular to intersect the 
arc b'c'. We then bisect the segment 
of this perpendicular from the point 
K to the point of intersection with 
the arc and through the point of di
vision draw a straight line parallel 
to the chord b'c’. Now we divide the 
segment 7'7' into a certain number 
of equal parts and, through the 
points of division, pass horizontal 
planes cutting the surface of revolu
tion in circles (i.e. parallels). We 
begin constructing the development 
with the midline (straight line s'E0).
On this line we lay off segments
lo2 ciy 2q30, . . .  respectively equal to 1 '2 ', 2'3\ . . .  by describing arcs of 
radii s 'l \  s'2', . . .  from the point s'. From points 7C, 20, . . .  on the arcs we 
finally lay off the lengths of the arcs of the horizontal projections of the 
parallels of the developed portion of the surface (for instance, 70M 0 = cm 
and 7oN0 = cn).

Fig. 448

QUESTIONS TO CHAPTER 11

1. What methods are applied for constructing the developments of 
cylindrical and conical surfaces?

2. How do we construct the development of the lateral surface of a 
frustum of a cone if it is impossible to complete the frustum?

3. How do we construct a conventional development of a spherical 
surface?



CHAPTER 12

AXONOMETRIC PROJECTIONS

Sec. 71. General

Axonometric projections* are widely used in engineering due to their 
pictorial force and simplicity in construction. Exercises in constructing 
axonometric projections of objects help a great deal in acquiring the skill of 
reading and understanding the language of engineering drawings, as well 
as in developing the ability to visualize the shapes of three-dimensional 
objects and to feel the proportions of machine parts.

Essentially, the method of axonometric projection consists in the fact that 
an object is referred to some coordinate system and then is projected by 
parallel lines or rays onto a plane together with the system of coordinates**.

In mechanical engineering axonometric projections are used as an 
auxiliary to orthographic projections of a mechanical part when the necessity 
is felt to give a clearer picture of its shapes which are difficult to visualize 
from the orthographic projections. Without the axonometric picture it is 
sometimes very difficult to visualize the shape of the object from the three 
orthographic projections alone.

Axonometric projections differ from orthographic (orthogonal) projec
tions in that in axonometry an object is projected only onto one plane of 
projection called the axonometric (or picture) plane and is placed in front 
of the picture plane so as to expose three sides to the viewer.

Figure 449 shows the scheme of projecting a point A of space referred 
to a system of rectangular coordinates Oxyz onto a plane P taken for the

♦The word ‘axonometry’ (Greek) consists of two words: ‘axon’—axis and ‘metreo’—I 
measure, and means ‘measuring with the aid of axes’, or ‘measuring along axes’.

♦♦From now on we shall call a parallel projection axonometric, bearing in mind, 
however, that an axonometric projection may also be a central projection.
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plane of axonometric projections. The direction of projection is defined by 
an arrow*.

The straight lines Ox, Oy> Oz represent the coordinate axes in space, 
and Opx , Opy 9 Opz their projections on the plane P. The latter are called 
the axonometric axes (or the axes of axonometric coordinates).

A line segment / is laid off on the axes x, y 9 z, and is taken as a unit of 
measurement along these axes (the true unit). The line segments /*, ly, lz on 
the axonometric axes represent the projections of the segment /. In the 
general case they are not equal to /, and are not equal to one another. The 
segments lx, ly, lz are called the axonometric units and are used for measuring 
along the axonometric axes**.

Distortion of the segments of the coordinate axes during projection on 
plane P is characterized by so-called distortion factors (ratios of foreshorten
ing, or scale ratios). The distortion factor is the ratio of the length of the 
projection of an axis on the picture to its true length. Thus, the ratios

are distortion factors along the axonometric axes. Let us denote the
distortion factor along the axis Opx by k 9 along the axis Opy by m, and along 
the axis OpZ by n.

The three-segment space line OlaA is projected into a plane polygonal 
line OplpapAp (Fig. 449). The point Ap is the axonometric projection of the 
point A\ the point ap represents the axonometric projection of the point a 
which is one of the orthographic projections of the point A , namely, on the

♦The direction of projection may form an acute or a right angle with the plane of 
axonometric projections. To ensure an obvious representation this direction should be 
parallel to none o f the projection planes.

♦♦The terms ‘axonometric scales’ and, accordingly, ‘the true scale’ are also used.
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H  plane {xOy). The noint ap is called the secondary projection of the point A. 
This term clearh ^presses the fact that point ap is obtained by means of 
two succesive projections.

We may construct two more secondary projections of the point A cor
responding to its two other orthographic projections on the planes V (.xOz) 
and W (yOz).

The ratios of the axonometric projections of the line segments parallel 
to the rectangular axes of coordinates to the line segments themselves are 
expressed by the distortion factors k, m, n.

Since (see Fig. 449) al is parallel to Oy and a A is parallel to Oz, a parallel 
projection results in aplp being parallel to Opy  and apAp to OpZ. The parallel 
projection preserves the ratio of parallel line segments, hence: aplp : ly =  
=  al: I or apl p :al = ly : I = m, where m is the distortion factor along the 
axis Opy. Analogous conclusions may be drawn with respect to the line 
segments arranged parallel to the axes x  and z: the ratios of the projections 
of such line segments to the segments themselves are equal to the distortion 
factors k and n, respectively.

For instance, the ratio of the axonometric projection APBP of the line 
segment AB parallel to the x-axis (Fig. 450) to the line segment itself is 
equal to APBP : AB =  k.

Each of the segments of the line OlaA defines one of the rectangular 
coordinates of the point A , the projections of these segments (the segments 
of the polygonal line OplpapAp) defining correspondingly the axonometric 
coordinates of the same point A . Obviously, with the aid of the distortion 
factors we can pass over from the rectangular coordinates to the axonomet
ric, and vice versa: xp = kx, yp =  my, zp =  nz, where xp, yp, zp denote the 
line segments defining the axonometric coordinates of the point, and x , y , z 
its rectangular coordinates.

Figure 451 gives an example of the construction of an axonometric pro- 
jection by its orthographic projections.
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Fig. 452

The point Ap is constructed by the coordinate line segments taken from 
the drawing: x =  O l, y = a l,z  = a'L Taking into consideration the distor
tion factors k , m, and n9 we lay off on the axis Opx  the line segment Oplp =  
=  k*0 1 9 draw the line segment l pap =  m*al parallel to the axis Opy  and, 
finally, the line segment apAp = n-a'l parallel to the axis OpZ.

The plane Q (Fig. 452) is represented by its traces in axonometric pro
jection. We construct the traces taking the points of their intersection with 
the axes by means of the corresponding intercepts (for instance, the point: 
Qxp is constructed with the aid of the intercept OQx : OpQxp = OQx).
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Fig. 453

Point A contained in the plane Q is constructed in axonometric projection 
by its coordinates. The horizontal line NPAP must be parallel to its secondary 
projection and the trace on the plane xOpy. The point Ap could also be 
constructed as the point of intersection of two straight lines contained in the 
plane 0 9 by constructing the axonometric projections of these lines.

The same figure represents the axonometry of a vertical projecting plane 
•containing a point Bp. How do we determine the rectangular coordinates of 
this point? The construction is shown in the right-hand drawing of Fig. 452 
{below): we draw (in axonometry) a horizontal line NPBP and construct its 
secondary projection to obtain the secondary projection bp. The required 
coordinates of the point B are

where k 9 m, n are the distortion factors.
When constructing axonometric projections use is usually made not of 

the distortion factors but of certain quantities proportional to them; these 
quantities will be called the reduced distortion factors*.

Using the reduced factors, we may put the greatest of them equal to 
unity which simplifies the construction involved.

If we take on a plane P four arbitrary points 0 P9 AP9 BP9 and Cp of which 
no three are collinear, and join them pairwise by straight lines, then we get 
a figure called the complete quadrilateral (OpApBpCp)\ this is the quadrilateral 
with its diagonals (see Fig. 453, a). If through these points we draw parallel 
straight lines and take on each of them an arbitrary point (O, A, B, C) so 
that all the taken points are non-coplanar, then in the general case we get a 
tetrahedron OABC**. Obviously, there is an infinite number of tetrahedrons

*The term ‘reduced distortion factors’ was introduced by N. F. Chetverukhin and 
E. A. Glazunov.

**In this case a triangular pyramid of an arbitrary shape.

m n
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in space whose parallel projection may be represented by the complete 
quadrilateral OpApBpCp and among them a tetrahedron with a right trihedral 
angle at point O and equal edges OA, OB, OC. This tetrahedron may be 
considered as a scale tetrahedron*, i.e. the three equal and mutually per
pendicular edges of this tetrahedron serve as scales of the coordinate axes 
in space (Fig. 453, c). This is the essence of the basic statement o f axonometry 
(or “the basic theorem of axonometry”) formulated as follows: any complete 
quadrilateral in the plane is always a parallel projection of a scale tetrahedron. 
Therefore, any three non-coincident straight lines passing through a point 
in the plane may be taken for the axonometric axes, i.e. for the projections 
of the axes of the rectangular coordinates, and any three line segments laid 
off on these lines from the point of their intersection may be taken for the 
axonometric units in conformity with the chosen ratio of the reduced distor
tion factors**.

If the distortion factors are equal along all three axes (k =  m = n), then 
the axonometric projection is called isometric; if the distortion factors are 
equal along any two axes and if the third differs from these two (for instance, 
k = n, but m is not equal to k ,o r k  = m, but n is not equal to k), then the 
.projection is called dimetric; and finally, if k m, k n, m n, then the 
projection is termed trimetric***.

Axonometric projections likewise differ in the angle which is formed by 
a projecting line with the projection plane P. If this angle is not equal to 90°, 
the axonometric projection is oblique, and if it is equal to 90°, the projection 
is rectangular. Naturally, isometric, dimetric and trimetric projections may 
be either rectangular or oblique.

For the sake of comparison let us imagine a sphere in rectangular and 
oblique axonometric projections. In the first case the elements of the pro
jecting cylindrical surface enveloping the sphere are perpendicular to the 
plane of axonometric projections. Since the projecting cylinder is a cylinder 
o f revolution, a rectangular axonometric projection of a sphere is a circle. In 
the second case (an oblique projection) the intersection of the projecting 
surface with the plane of axonometric projections yields an ellipse. In an 
oblique axonometric projection the representation of the sphere is less 
descriptive.

*The term ‘scale tetrahedron’ was introduced by N. F. Chetverukhin.
**“The basic statement of axonometry” was formulated by K. Polke (in 1851) in 

the form of the following theorem: any three line segments emanating from a single point 
in the plane may be taken fo r a parallel projectionof three equal and mutually perpendicular 
line segments in space. In the sixties of the last century G. Schwartz generalized Polke’s 
theorem. He proved that any complete quadrilateral in the plane may always be regarded 
as a parallel projection of a tetrahedron similar to any given one.

***The ancient Greek ‘isos’ means ‘equal’; in isometric projection the distortion factors 
are equal along all three axes; ‘di’ means ‘double’; in dimetric projection the distortion 
factors are equal only along two axes; ‘treis’ means ‘three’; in trimetric projection the 
distortion factors are different along all three axes.
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In the practice of constructing obvious representations use is made only 
of certain definite combinations of directions of the axonometric axes and 
the distortion factors (or reduced distortion factors).

1. Let us take the plane of axonometric projections so that it intersects
all three coordinate axes at points '(9 Y, Z  (Fig. 454, left). In the case of 
rectangular axonometric projections the line segment 0 0 p is perpendicular 
to the plane P. The segments OpX , OpY, and OpZ  (axonometric projections 
of the y -, and z-intercepts) represent the legs of right triangles, the inter
cepts themselves being the hypotenuses of these triangles. Hence, OpX : OX — 
=  cos a, OpY: OY =  cos /?, OpZ  : OZ = cos y. But these relationships 
represent just the distortion factors k, m, n. Consequently, k = cos a, 
m =  cos /?, n = cos y. For the line segment OOp the cosines of the angles a iv 
Pu yi (Fig* 454, right) complementary to the angles a, /?, and y are the
direction cosines. Therefore, cos2ai+cos2/?i+cos2yi =  /*. Sincea =  - —ai*
and so on, sin2 a + sin2 + sin2 y = 1, i.e. 1 — cos2 a +1 — cos2 /? +1 — cos2 y = 1, 
whence cos2 a + cos2 /?+cos2 y = 2. Consequently, k2+m2+n2 =  2, i.e. for 
a rectangular axonometric projection the sum of the squares of the distortion 
factors is equal to two.

2. Isometric projection**. Since k = m = n, we have 3k2 =  2, whence

This means that in a rectangular isometric projection the foreshortening 
along all three axes (or along straight lines parallel to the axes) is approxi
mately equal to 0.82.

3. Dimetric projection. Two distortion factors are equal to each other* 
and the third is not equal to them. If we take k = n, and put m =  1/2 fc* 
we shall obtain

Consequently, in a rectangular dimetric projection the foreshortening 
along two axes (in the present case along the axes Opx  and Opz) or along

*We recall here how this relationship is derived (Fig. 454, right): OK2 =  OX2+  
+  OY2+ O Z 2, but O X =  O K -casa l9 O Y  =  OJST-cosft and O Z =  OK-cos y lt 
whence O K2 =  O K 2 cos2 a ^ O K 2 cos2 Px+ O K 2 cos2 y u and (after reduction by O K2) 
1 =  cos2a1+ co s2^ i+ cos2y 1.

**The term ‘isometric projection’ was first suggested by William Farich in his reports 
delivered in 1820 in Cambridge (England).

Sec. 72. Rectangular Axonometric Projections. 
The Distortion Factors and Angles Between the Axes
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straight lines parallel to these axes is approximately equal to 0.94, and along 
the third (that is along the axis Opy) to ^  0.47.

4. Intersecting the coordinate planes, the plane of axonometric projections 
forms a triangle called the triangle o f traces.

Let us prove that in rectangular axonometric projections the axonometric 
axes are the altitudes of the triangle o f traces.

Indeed, if OOp is perpendicular to P, then OK is perpendicular to XY  
and, by virtue of the theorem on three perpendiculars, ZK  is perpendicular 
to XY. (Fig. 455). Analogously, XM  is perpendicular to YZ. The point Op 
is the point of intersection of the altitudes (the orthocentre) of the triangle of 
traces.

Furthermore, in rectangular axonometric projections the triangle of traces 
is an acute-angled triangle.

Indeed, in this case the orthocentre is located inside this triangle, and 
such position of the orthocentre is characteristic only of an acute-angled 
triangle.

It follows from this fact that the angles XOpZ , XOpY, and YOpZ  are 
obtuse. Indeed, since the triangle of traces is an acute-angled one, the angle 
between the altitudes supplements the acute angle up to 180°, for instance.
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MOpK = 180°— XOpK\ but ^  XOpK is an acute one, hence, ^  MOpK  
is obtuse.

But it does not follow from this fact that in a rectangular axonometric* 
projection we may use only such arrangement of the axes which is shown 
in Fig. 456, a. Let the x- and y-axes be extended beyond the point Op as 
it is indicated in the figure. In such a case the angle between the extended' 
axes will remain obtuse, but the angles formed by either of these axes with 
the z-axis will turn out to be acute. But it is not difficult to establish that 
in a rectangular axonometric projection the choice of the axes is still limited* 
and namely, it is necessary that an obtuse angle between two axes be divided 
by the extension of the third axis, and an acute angle between two axes could 
not be divided by the extension of the third axis.

5. Suppose we are given the axes for a rectangular axonometric projection 
(Fig. 456, a) and it is required to determine the distortion factors for the given 
arrangement o f the axes.

First of all we construct a triangle whose altitudes are directed parallel ta  
the given axes (Fig. 456, b). This triangle serves as the triangle of traces in 
which the angle XOpY  is obtained as the projection of a right angle between 
the axes x  and y  in space. Let us bring both angles XOpY and XOY into 
coincidence with the plane of the drawing by revolving the angle XOY about 
the straight line XY  (Fig. 456, c). Figure 456, b shows that bisecting XY  
with point Ci and describing a semicircle of radius C\X  from this point* 
we can project the point Op along a perpendicular to XY  onto the semicircle^ 
The point Oi is the vertex of the right angle between the x- and y-axes in 
space after the revolution.

Now the distortion factors are determined from the relationships OpX : 
OiX = k and O Y : 0{Y  =  m. To determine the factor w, we may use the 
formula k2 +m2 +n2 = 2 or to construct a semicircle on XZ  as the diameter,, 
and to take the ratio OpX : O2X = n.
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Fig. 458
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6. In items 2 and 3 of this section we evaluated the distortion factors for 
rectangular isometric and dimetric projections. Using these values o f the 
distortion factors, we can determine the angles between the axes for these 
rectangular axonometric projections from the triangles of traces*.

Isometric projection (Fig. 457). Since we consider a rectangular projection, 
the straight line 0 0 p is perpendicular to the plane containing the triangle of 
traces.

In isometric projection the distortion factors are equal along all three 
axes: k  =  m =  n; consequently, cos a = cos /? = cos y and a = f  = y (the 
angles are acute).

It follows from this fact that for isometric projection the triangle of 
traces is isosceles. Hence, in the triangle of traces each of the angles XOpZ 9 
XOpY , YOpZ  is equal to 120°.

Thus, for isometric projection we obtain the arrangement of the axes 
as is shown in the right-hand picture of Fig. 457.

The plane of isometric projections intersecting the positive semi-axes 
x, y 9 z will be represented in the system of orthographic projections as is 
shown in Fig. 458, a. This plane forms with each of the coordinate planes an 
angle d % 55° (more accurate, 54°45').

Obviously, planes arranged like those shown in Fig. 458, c as well as the 
figures contained in them will be represented in isometric projection in the 
form of a straight line.

Dimetric projection. Here of the three distortion factors two are equal 
to each other. We are going to consider the case when k = n9 k  =  2m. In 
this case the angle between the axonometric axes Opz and Opy must be equal 
to 131°25', and the axis Opx  forms an angle of 7°10' with the perpendicular 
to the axis Opz.

Let us prove this. Suppose k = n and, hence, a = y and OX =  OZ 
(Fig. 457, left). Taking the line segment OX for unity, we get XZ ]f2

2  ]/2  2Considering the dimetric projection in which k  = n = and m = -y ,

we may write OpX  =  OpZ  =  . Since OX =  OZ, we have XY = Z Y 9

i.e. in this case the triangle XYZ  is an isosceles one.
In this triangle (Fig. 459) the altitude YK bisects the side XZ9 i.e.

X K  =  K Z  =
X Z V2_

2  *

♦More precisely, from triangles similar to the triangles of traces. Generally, given 
the distortion factors, we may construct the axes in a rectangular axonometric projection 
applying Weissbach’s theorem: “In a rectangular axonometric projection the axonometric 
axes are the bisectors of the angles o f the triangle whose sides are proportional to the 
.squares of the distortion factors”.
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Fig. 459

22-23012
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From the examination of a right-angled triangle OpKZ it follows that
ZK i2  ' I ' l l

sin5=<xz = ^ =  0.75.

The angle 8  % 48°35'; 28 = 97°10'. It is seen from the figure that the angle 
SOpX % 7°10', since OpS  is perpendicular to OpZ .

We then note that
^  KOpS  ^  48°35' — 7° 10' = 41°25/.

And so, we have obtained the arrangement of the axes for the dimetric 
projection shown in Fig. 459, right, in which the distortion factors form the 
ratio 1 : 0.5 : 1.

We may construct the axis Opx , taking tan 7°10' equal to 1/8, and the 
axis Opy , taking tan 41°25' equal to 7/8. The axis Opy can be drawn in another 
way, i.e. as an extension of the bisector of the angle zOpx (see Fig. 459, left). 
This method is preferable.

If the plane of the dimetric projection under consideration, intersecting 
the positive semi-axes x, y 9 z, is represented in the system of orthographic 
projections, then we shall obtain a drawing shown in Fig. 460, a, the angle 
p being approximately equal to 20°40' (OPy : OPx = tan p = 0.377).

Thus, if the plane of dimetric projection is to be represented in the system 
of orthogonal projection, we have to lay off OPz = OPx and OPy ^  0.377 • 
OPx or, when rounded off, 0.4 *OPx.

Obviously, planes arranged like those shown in Fig. 460, c and the figures 
contained in them will be represented in dimetric projection in the form of a 
straight line.

Line segments located parallel to the coordinate axes in space are fore
shortened when projected in axonometry to an extent expressed by the cor
responding distortion factors. But among line segments located in space there 
are such segments whose lengths do not change in axonometric projection. 
These are segments located in space parallel to any of the sides of the triangle 
of traces. Indeed, any line segment arranged, for instance, parallel to the 
trace XY  (Fig. 457, left), the segment XY  included, preserves its length in 
axonometric projection. But in a rectangular axonometric projection these 
segments turn out to be arranged perpendicular to the axonometric axes as 
straight lines parallel to the sides of the triangle of traces.

We shall confine ourselves to considering the two above mentioned 
rectangular axonometric projections—isometric and dimetric with the ratio 
of the distortion factors 1 : 0.5 : 1 and the axes arranged as in Fig. 459. Later 
on, when using the names ‘isometric’ and ‘dimetric’ projections, we shall 
mean just these rectangular axonometric projections.

In constructing the considered projections the following deviations are 
allowed:

(1) in isometric projection the distortion factors 0.82) are mostly
not used; they are replaced by the reduced factors equal to unity;
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2 ̂ 2 V 2(2 ) in dimetric projection the distortion factors -^ -(^0 .94 ) and —
0.47) are usually not used; they are replaced by the reduced factors 1 and

0.5, respectively.
The replacement of the true factors by more convenient numbers (that 

is, by reduced factors) is of considerable importance for the construction 
practice. Somewhat enlarged representations resulting from this replacement 
may turn out to be unacceptable only in special cases of construction. In the 
latter cases the true distortion factors should be used.

The elongation of line segments in an isometric projection constructed 
with the use of the reduced distortion factors is expressed by the ratio
1 : j / y  ^  1 .2 2 , and in dimetric projection by the ratio 1 : % 1.06.

For instance, the line segments parallel in space to the sides of the traingle 
of traces and, consequently, laid off in axonometric projection in the direc
tions perpendicular to the axonometric axes are elongated by 1 . 2 2  times as 
compared with the true length in isometric projection, and by 1.06 times 
in dimetry.

Sec. 73. Constructing a Rectangular Axonometric 
Projection of a Circle

1. Let us begin with the general problem: Construct a rectangular 
axonometric projection of a circle contained in an oblique plane Q.

If the plane Q forms an acute angle cp with the plane of axonometric 
projections P, then the axonometric projection of the circle is an ellipse 
(Fig. 461). The major axis of this ellipse is the projection of the circle’s 
diameter which is parallel to the line MN  of intersection of the plane Q and 
P, the minor axis of the ellipse being the projection of the circle’s diameter 
which is arranged perpendicular to MN, i.e. located on the line determining 
the inclination of the plane Q with respect to the plane P. If C is the centre 
of the circle contained in the plane Q, then the minor axis of the ellipse 
obtained in projecting this circle into the plane P will be found on the line 
CPK. The length of the minor axis of the ellipse depends on the magnitude 
of the angle cp between the planes Q and P; if (Fig. 462) the line segment 
CB is equal to the radius (R) of the circle, then the semiminor axis of the 
ellipse CpBp = R cos (p.

2. If cp = 0°, then CPBP = R which means that the plane £>i (Fig- 463) 
is parallel to the plane of axonometric projections P, and the axonometric 
projection of the circle contained in the plane Q\ represents a circle.

If cp = 90°, then CPBP =  0: the plane Q2 (Fig. 463) is perpendicular to 
the plane of axonometric projections P, and the axonometric projection of 
the circle contained in the plane Q2 represents a line segment.

If the circle is projected into an ellipse, we may construct the projections 
of any two mutually perpendicular diameters. The two conjugate diameters 
obtained enable us to construct the ellipse itself and also to find its axes.
22*
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Fig. 463

3. Considered below is the direct construction of the axes of the ellipse 
(i.e. a rectangular axonometric projection of a circle) which is reduced to 
finding the direction and length of its minor axis.

Since the length of the minor axis depends only on the length of the 
diameter of the projected circle and the magnitude of the angle (p (see above), 
obviously, in many cases we shall obtain ellipses with repeated lengths of 
the axes. To get this result, it is necessary and sufficient that all circles be of 
one and the same diameter and are contained in planes forming equal angles 
with the plane of axonometric projections.
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Such planes are tangent to a cone of revolution whose axis is perpen
dicular to the plane of axonometric projections and the generatiix makes an 
angle q> with this plane. Let us call this cone a directing one.

For example, circles contained in horizontal, vertical, and profile planes 
are represented in isometry in the form of ellipses whose minor axis is 
approximately equal to 0.58 of the length of the major axis (see below). 
But if we take a circle in a plane inclined to the plane of isometric projections 
at an angle of ~  54°45\ i.e. at an angle formed by the planes 7/, F, W 
with the plane of isometric projections, then the ratio of the length of the 
minor axis of the ellipse (the isometric projection of a circle) to the length 
of its major axis will also be equal to ^  0.58.

Let us imagine a rectangular tetrahedron formed by the projection 
planes and the plane of isometric projections with a directing cone placed 
in it. The vertex of the cone is located at point O, the circumference of its 
base turns out to be inscribed in the triangle of traces, and the generatrix 
forms an angle cp ^  54°45' (tan cp = /2) with the plane of isometric pro
jections. The circles contained in the planes tangent to the directing cone 
are represented in isometric projection by ellipses whose minor axis con
stitutes approximately 0.58 of the length of the major axis.

Thus, many congruent ellipses representing the axonometric projections 
of circles of one and the same diameter are obtained in many positions 
relative to the axonometric axes.

But we can obtain ellipses repeated not only in size but also in position 
relative to the axonometric axes, i.e. it is possible to get equal and equally 
directed projections (ellipses), though the originals (circles) are located in 
planes not parallel to one another. If we imagine two equal directing cones 
placed on the plane of axonometric projections on both of its sides and 
consider the planes tangent to the directing cones and having a common 
trace of the plane of axonometric projections (or planes parallel to them) 
then the circles of equal diameters located in these planes will be represented 
in axonometric projection by congruent and equally directed ellipses.

4. Let us pass over to considering the method of construction of the 
minor axis of the ellipse representing a rectangular axonometric projection 
of a circle of radius R located in a plane Q inclined to the plane of axono
metric projections P at an acute angle cp. Suppose that at point C (Fig. 462) 
a perpendicular CD is erected to the plane Q. The projection of this per
pendicular on the plane P will be situated on the same straight line CPK  
on which is situated the minor axis of the ellipse representing the axono
metric projection of the circle described in the plane Q from C as centre.

Consequently, the projection of a perpendicular dropped to the plane Q 
onto the plane P determines the direction of the minor axis of the ellipse.

If a line segment CD = R is laid off from C on this perpendicular and 
a right triangle CED is constructed, then we can establish that A CED =  
= A CBiB and the leg DE =  BB1 = CPBP = R cos <p, i.e. equal to half the
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length of the minor axis of the ellipse. The second leg of this triangle (the 
leg CE) is equal to CPDP, i.e. to the projection of the line segment CD on the 
plane P of axonometric projections.

Hence, we may construct the axes of the ellipse representing an axono
metric projection of a circle of radius R contained in an oblique plane Q in 
the following way:

(a) to drop a perpendicular to the plane Q (in the left-hand drawing of 
Fig. 464) from the centre of the circle (point C) and lay off on it a line 
segment CD = R\

(b) to construct (in the given system of axonometric axes), using the 
coordinates of the points C and Z>, the axonometric projection of the seg
ment CZ>, i.e. the segment CPDP (Fig. 464, right) which will indicate the 
direction of the minor axis of the ellipse;

(c) to determine the length of the semiminor axis of the ellipse which is 
done by erecting a perpendicular to CPDP at point Cp, intersecting it by a 
circular arc of radius R described from the point Dp as centre, and laying 
off the length of the obtained segment Cpb9 equal to R cos 99, on the line CPDP 
on both sides of Cp.

Thus, the minor axis of the ellipse is determined (b\b2 = 2R cos cp);
(d) to lay off the segment Cpa\ and Cpa2, each one equal to the radius 

R of the projected circle, on the perpendicular erected to the line CPDP at 
point Cp \ in this way the major axis of the ellipse is obtained (<a\a2 = 2R).

Now the ellipse can be constructed by its axes*.
5. Let us apply the above method for constructing the axes of the 

ellipse representing a rectangular axonometric projection of a circle also to

*The isometric projections shown in Fig. 464 are constructed using the true distortion 

factors |j/*— 0.82^ .
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the cases when the circle is located in a projecting plane. Here we need not 
construct the projections of a line segment by its length R : if the circle is 
contained in the plane T  (Fig. 465), then any perpendicular to this plane is 
parallel to the V plane, and, hence, the projection obtained on this plane is 
equal to the projected line segment R.

The construction is carried out for two positions: in Fig. 465 a circle of 
radius R is contained in a vertical projecting plane T, while in Fig. 466* in 
a horizontal projecting plane S . The same as in the case of an oblique 
plane, we have to construct (using the coordinates of the points C—the 
centre of the projected circle—and D) the axonometric projection of the line 
segment CD equal to R, to determine the length of the semiminor axis, 
using the construction shown in Fig. 464, and, finally, to construct the 
ellipse by the axes thus found.

6. Let us apply the above considered method of construction to the 
case frequently met in everyday practice when a circle is contained in a 
plane parallel to the plane of projection. Suppose the circle is located in a 
horizontal plane S  (Fig. 467). In this case the perpendicular dropped from 
the centre of the circle onto the plane S  will be parallel to the z-axis and 
its axonometric projection (line segment DPCP) will be arranged parallel to 
the axonometric axis Opz. But, as we know, the axonometric projection of 
this perpendicular defines the direction of the minor axis of the ellipse. 
Hence, in this case the minor axis of the ellipse turns out to be parallel to 
the axis Opz and the major axis is perpendicular to this axis. Obviously, the 
consideration of the cases when circles are contained in vertical and profile 
planes will lead us to a conclusion that the major axis of the ellipse will be 
perpendicular to the axis Opy in the first case, and to the axis Opx in the

*The constructions shown in Fig. 465 are carried out in isometry using the red uced 
distortion factors, therefore 1.22R is taken in the drawing. Fig. 466 illustrates the con
structions in dimetry using the reduced distortion factors, therefore 1.06i? is taken.
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Fig. 468
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second. And so, we obtain a scheme of arrangement of the axes of ellipses 
(see Fig. 468) in a rectangular axonometric projection of circles contained 
in planes parallel to the projection planes.

In these cases the length of the semiminor axis may be determined in 
the above manner. Once the axes are constructed, we pass over to construct
ing the ellipses.

We are going to apply this to the above considered isometric and 
dimetric projections.

7. Isometric projection. Since the plane of isometric projection is 
inclined to the projection planes H , V and W at one and the same angle, it is 
sufficient to determine the minor axis of the ellipse, say, for the case when a 
circle of radius R is situated in a plane parallel to the H  plane.

Suppose the coordinates were laid off without multiplying them by 0.82.. 
In this case CPDP (Fig. 467, b and c) becomes equal to R, and we have to 
strike an arc of radius 1.22R from point Dp as centre intersecting the per
pendicular to CPDP. From the right triangle CPDPK we get: CPK  (thesemi- 
minor axis of the ellipse) ~  )/(1.22R)2—R2 ~  0.7R. The corresponding, 
semimajor axis will be equal to 1.22R.

If the coordinate are laid off on being multiplied by the distortion factor 
0.82, then the corresponding major axis will be equal to R and the minor 
axis to 0.58R.

Thus, if a circle of diameter D is contained in a horizontal, vertical or 
profile plane, then in isometry the major axis of the ellipse is equal to Z), 
and the minor axis to 0.58D. I f  we are going to use an isometric projection 
with reduced factors, then the axes of the above mentioned ellipses should be 
taken respectively equal to 1.22D and 0.7D.

To the four points representing the end-points of the ellipse we may add 
four more points, namely, the end-points of two conjugate diameters of the 
ellipse which are respectively parallel to two of the axonometric axes 
(depending on which plane of coordinates the plane containing the con
sidered circle is parallel to). With the above mentioned enlargement (1.22) 
these conjugate diameters are equal to the diameter of the circle under 
consideration.

Suppose, for instance, it is required to construct an isometric projection 
of a circle of diameter 100 mm located in space in a plane parallel to the 
W plane. The position of the ellipse is determined by the axes Opy and Opz. 
Taking in the drawing (according to a certain condition) a centre Cp (Fig. 
469), we draw:

(a) a straight line perpendicular to the x-axis and lay off on it the major 
axis of the ellipse a\a2 =  122 mm;

(b) a straight line parallel to the x-axis and lay off on it the minor axis 
of the ellipse b\b2 = 70 mm;

(c) a straight line parallel to the y-axis and lay off on it the diameter oF 
the ellipse d\d2 = 100 mm;

(d) a straight line parallel to the z-axis and lay off on it the diameter oF 
the ellipse e\e2 = 100 mm.
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The eight points thus found enable us to sketch the required ellipse 
freehand. When finishing the ellipse, its axes are usually erased. The usual 
practice is to leave only the directions parallel to the axonometric axes, one 
of them, namely, the direction corresponding to the axis perpendicular to 
the plane containing the circle is marked with a thick dot-and-dash line.

The length of the minor axis may be obtained by the method indicated 
in Fig. 469 (right): on constructing the major axis of the ellipse a\a2 and 
a perpendicular to it at the centre cp of the ellipse, we draw from the end- 
point of the major axis (for instance, from a±) a straight line parallel to the 
x-, or y-, or z-axis to intersect this perpendicular. The line segment cpby 
thus obtained determines the semiminor axis.

8. Dimetric projection. Since the plane of dimetric projection is inclined 
at one and the same angle only to two projection planes (H and W), we have 
to determine the semiminor axis of the ellipse for the case when the circles 
are contained in planes parallel to the projection planes H  and W, and 
separately for the case when the circle is located in a plane parallel to the 
V plane.

Using the construction analogous to that shown in Fig. 467, we get 
(Fig. 470) CPDP parallel to the z-axis in one case, and CPDP parallel to the
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y-axis in the other. Hence, in the first case CPDP = R, and in the second 
case CPDP =  0.5R, where R is the radius of the circle represented in di
metric projection (it should be borne in mind that dimetric projection is 
constructed using the reduced distortion factors 1 : 0.5 : 1).

From the right-angled triangles CPDPK (Fig. 470) it follows that in the 
first case CPK (the semiminor axis of the ellipse) is equal to

}/(1.06/?)2- / ? 2 -  0.35/?, 

and in the second case it is equal to

/(1.06/?)2 — (0.5/ ? ) 2 % 0.94R.

Thus, if circles of diameter D are located in a horizontal or profile 
planes (or parallel to them), then in dimetric projection the major axis of
the ellipse turns out to be equal to Z), and the minor axis to -y-.

And if a circle of diameter D is situated in the vertical plane (or parallel 
to it), then in dimetric projection of this circle the axes of the ellipse are 
equal to D and 0.88D, respectively.

But since the dimetric projection is constructed by the reduced distortion 
factors, for the circles contained in the horizontal and profile planes (or in 
planes parallel to them) the axes should be taken equal to 1.06D and 0.35Z), 
and for those lying in the vertical plane (or in planes parallel to it) to 1.06 
and 0.94D.

Figure 471 illustrates the construction of eight points for each ellipse in 
dimetry. In all the cases the axis a\a2 = 1.06Z), diameters f f 2 = eie2 = Z>, 
diameter d\d2 = 0,5D; as to the minor axis b\b2 \ in two positions it is equal 
to 0.35Z), and in one position (when it is parallel to the y-axis) to 0.94ZX

When finishing the ellipse, we indicate only the directions parallel to the
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Fig. 472

axes (see the right-hand ellipses in Fig. 471). For an ellipse whose minor 
axis is parallel to the y~axis we can find the point bi by drawing from point 
a± a straight line parallel to the x-axis (if through the point a\ a straight 
line is drawn parallel to the z-axis, then we get the point fc2).

9. Let us consider another method of deriving the values of the distortion 
factors for determining the length of the minor axis of the ellipse representing 
a circle located in space in the coordinate plane xOy, or xOz, or yOz (or 
parallel to these planes). Figure 472 represents the planes of axonometric 
projections coincident with the plane of the drawing, i.e. in the vertical 
position: (1) the plane of isometric projections, (2 ) the plane of dimetric 
projections (1 :0.5 : 1), (3) the same, but with the y-axis in the vertical 
position. All the cones are supplied with the planes of axonometric projec
tions (P") and the coordinate axes in their position relative to the plane of 
axonometric projections for isometry and dimetry represented on an addi
tional profile plane.

Since in isometric projection the angles between the coordinate axes 
Ox, Oy, and Oz and the plane of isometric projections are equal, and the
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i f  2*distortion factor is equal to V -  in all three cases, the construction of the
projection Ofpfz"  is reduced to the construction of the angle (p by the value
of its cosine: cos cp = . Since the axis Oz lies in space in a profile plane,
the profile projection of the coordinate plane xOy will represent a straight 
line at an angle of 90° to Op z".

Now we can pass over to the computation of the factor for determining 
the length of the minor axis of the ellipse required for constructing an iso
metric projection of a circle referred to the coordinate plane xOy. Of all 
diameters of the circle the one inclined at an angle b to the plane of isometric 
projections will turn out to be the most foreshortened. Let this diameter 
have the projections b[b2 and bib'2\  the latter being equal to the diameter 
of the circle (taking into account the scale of the drawing).

Since b + cp = 90°, we have cos cp = j/"| =  sin b. But to determine b[b2 

from b ib '2 ' 9 we must have

cos <5 =  ]/\ —sin2 6 =  ] / 1  *  0.58.

Thus, for computing the length of the minor axis of the isometric ellipse 
by the length of the diameter of the circle, we must take a distortion factor 
equal to 0.58, or a reduced distortion factor equal to 0.7. This is valid for 
all three cases, that is when a circle in space is located in a horizontal, or 
vertical, or profile plane.

Passing over now to the dimetric projection (the second and third posi
tions in Fig. 472), we should pay attention to the fact that the plane of 
dimetric projections is inclined at one and the same angle only to two coordi
nate axes, i.e. to Ox and Oz. Therefore, two positions (second and third) 
are given: in the former a circle is considered in the plane xOy (the same is 
also true for the case when a circle is situated in the plane yOz), in the latter 
the circle is considered in the plane xOz.

2V2 . .  y 2Taking cos (pi = —-  for the second position and cos cp2 = -j- for the
third, we get:

cos <5, =  ] / l - -  =  *  0.33

and
cos <5g =  j / 1 =  j s s  0.88,

for the reduced distortion factors the respective values being % 0.35 and 
% 0.94.

*A11 calculations are given in true factors, not in reduced one.
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Fig. 473

Sec. 74. Examples of Constructions in Isometry 
and Dimetry

Given below are some examples of constructions carried out in rectan
gular isometric and dimetric projections.

1. Projecting a sphere. Figure 473 (top) shows a sphere represented in 
isometric and dimetric projections.

In both cases the sphere is shown with half-a-quarter cut away. The 
circles representing the contours of the projections are drawn in the follow
ing way: for the isometric projection with the radius equal to 1 .2 2 R, and for 
the dimetric projection with the radius of 1.06/?, where R is the radius of the 
sphere. The ellipses used in both cases correspond to the equatorial and two 
meridional sections.

Figure 473 (bottom, left) shows a sphere represented in isometry with a 
point A on its visible side. The right-hand drawing demonstrates the con
struction of a secondary projection a£ (see Fig. 449) and a three-segment 
coordinate polygonal line a^lpO p  which enables us to determine rectangular 
coordinates of the point A in space. The construction is carried out in suppo
sition that the plane of isometric projections is in a vertical position, and 
that the axes x, y, z of rectangular coordinates inclined to it at equal angles 
are projected not only on this plane, but also on an additional profile plane Q.
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Thus we get a system of projection planes P, Q and the projections ap and 
aq of the given point A. In this case aq is obtained by cutting the sphere 
with a plane T. The secondary projection of the point A is also represented 
by two projections: aq and ap.

2. Lines of intersection of a cylinder and a cone with a plane. Figures 474 
and 475 show the construction of isometric projections of the lines of inter
section of a cylinder and a cone by vertical projecting planes*. In the cases 
under consideration the lines of intersection represent ellipses.

First of all we construct the lines of inclination of planes P and <2, 
using for this purpose the given drawing and the coordinates of the points A\ 
and A2- To construct the points belonging to the ellipses, we take auxiliary 
cutting planes: parallel to its generatrix and the plane yOz for the cylinder, 
and passing through the vertex and parallel to the j>-axis for the cone. These 
planes are specified by their traces parallel to the y-axis on the planes of the 
bases of the cylinder and cone.

With the auxiliary planes chosen in such a fashion the straight lines along 
which they intersect with the planes P and Q turn out to be parallel to the 
j>-axis. The intersection of these lines with the elements of the cylinder 
and cone yields the points belonging to the required ellipses.

*The construction  is carried o u t using the reduced distortion factors.
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In the first place we have to find the reference points marked in the draw
ings by Ai , A2, B i ,  and B 2, as well as those to be obtained on the contour 
lines of the isometric projection. The semiminor axis of the ellipse obtained 
in the section equal to cb-i preserves its length in the isometric projection 
(icbi = CBi). But its sense of the minor axis of an isometric ellipse the line 
segment BiB2 preserves only with the plane Q, i.e. when the angle of incli
nation of this plane indicated in the drawing is equal to 45°.

Indeed, in this case the segment B\B2, being parallel to the y-axis, 
remains in the isometric projection perpendicular to A\A2\ hence, the seg
ments A\A 2 and B\B2 retain their sense as the axes of an ellipse. But if a plane 
is inclined at a different angle, as it is shown on the cylinder for the plane P, 
the line segments A\A 2 and B\B2 in isometry are no longer the axes of an 
ellipse, they are only its conjugate diameters.

3. Constructing coordinate segments for a point specified on the surface of 
a cylinder and a cone of revolution in axonometry. Figure 476 gives a



couple of examples for a cylinder and a cone in isometry. In all the cases 
under study the origin is taken at the centre of the base (point O).

Through the point A given on the cylinder a straight line is drawn parallel 
to the z-axis, and from the secondary projection a a straight line is construct
ed parallel to the 7 -axis to intersect the x-axis. The line segments 07, 
la , and aA make it possible to determine the coordinates of the point A in 
the given system of the coordinate axes.

Through the point A given on the cone an element is drawn, and then 
the secondary projection {OB) of this element is constructed. Drawing from 
the point A a perpendicular to intersect OB, we get the secondary projection 
of the point A. The further construction is obvious from the drawing.

Figure All illustrates the construction of the coordinate segments for a 
point specified on the surface of a frustum of a cone of revolution in isometry 
(Fig. 477, a). Suppose we have an axial section of the cone by a plane passing 
through the point B (Fig. 477, b). In the trapezoid thus obtained we draw a 
straight line SA parallel to CD and a straight line BO to intersect SA at 
point K. We get the following proportion: O K : KB = OA : AD which is 
preserved in the isometric projection as well. Let us construct a cone with
23-23012



354 DESCRIPTIVE GEOMETRY

the vertex at point S  whose generatrix will be parallel to that of the frustum 
of a cone (Fig. 477, c). The ratio OA\ : A\D\ repeats the ratio OA : AD 
entering the above proportion. Now we can obtain the point K on OB in 
Fig. 477, c. The element drawn through the points S  and E determines the 
point K (Fig. 477, d) and the projection OF of the element on which the 
point B is situated. Hence we get the possibility to obtain the secondary 
projection b (Fig. 477, e) and coordinate segments Bb, bl, and Ol determining 
the coordinates z, y, and x.

The above construction is given for the case when it is impossible to 
complete the frustum to get a full cone. If such a possibility exists, then the 
construction is accomplished as is shown for the cone represented in Fig.
477, b.

4. Examples of the construction of the lines of mutual intersection of 
cylindrical and conical surfaces of revolution. The lines of intersection are 
constructed point by point which are found either by their coordinates taken 
from the orthogonal projections, or by the method of auxiliary cutting planes 
applied directly in the axonometric projections. The latter is shown in Fig.
478, a, b, c, d.

Auxiliary secant planes intersect the given cylinders and cones along 
generating elements. In Figure 478, a the axes of the cylinders are intersecting 
lines, while in Fig. 478, b they are skew lines. While in (a) points A and A\ 
are determined by means of a cutting plane passing through the axes of both 
cylinders, in (b) we have to take into account the displacement /. In (c) the 
cutting planes pass through the straight line S\S2, and their traces on the 
plane containing the base of the cone with the vertex S\ pass through the 
trace of the line S \S 2 on this plane. In (d) the planes pass through the line 
MN drawn through the vertex of the cone (point S) parallel to the generatrix 
of the cylinder.

5. Constructing the points of contact of a circle representing the contour 
of the projection of a sphere with an ellipse depicting the projection of the circle 
obtained on the sphere when the latter is cut by a plane. Figure 479, a 
demonstrates a sphere cut by three planes: a profile (71), horizontal (Q), 
and vertical projecting (S). From this drawing an isometric projection is 
constructed using the reduced distortion factors (Fig. 479, b). The ellipse E\ 
is constructed in the way shown in Fig. 469, and the ellipse/^ as in Fig. 465. 
The projection of the sphere is represented by a circle of radius equal to 
1.22/?. This circle contacts the ellipse E i at point K, and the ellipse E 2 at 
point L.

Let us see how the point K is found. It is obtained on the circle represent
ing the contour of the projection of the sphere, i.e. in the plane of isometric- 
projection (P), and at the same time on the ellipse Pi, i.e. in the plane T 
which cuts the sphere. But if a point belongs simultaneously to two planes, 
then it belongs to the line of intersection of these planes.

As is known, the plane of isometric projection is equally inclined to the 
planes K, H, and W. The triangle of traces of this plane is isosceles (see 
Fig. 457). Taking the plane P to the point Op, i.e. to the origin of the axes
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( a )  ( b )

Fig. 478
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and centre of the sphere, we get the position of the traces indicated in 
Fig. 479, c.

The plane T  will be represented in the same system of axes in traces, 
as is shown in Fig. 479, d. Let us superpose figures (c) and (<d) and construct 
the line of intersection of the planes P and T (Fig. 479, e): the straight line 
MN passes through the point M  of intersection of the horizontal traces 
parallel to the trace Pw, since T  is parallel to W (in this case Pw is perpendi
cular to OpX9 hence MN  is perpendicular to Opx).

Finally, we have to find point K  as the point of intersection of the line MN 
with the circle representing an isometric projection of the sphere (Fig. 
479,/).

To find the position of point L (see Fig. 479, b), we have to represent 
the vertical projecting plane S  (Fig. 479, g) in the system of isometric axes, 
and then to find the line of intersection of the planes P and S  (Fig. 479, c): 
this line passes through the point M\ of intersection of the traces Sh and Ph 
and through the point N\ of intersection of the traces Sv and Pv. The required 
point L  is obtained as the intersection of the straight line MiNi with the 
circle representing an isometric projection of the sphere.
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Fig.  479

Sec. 75. Oblique Axonometric Projections

Let us first of all dwell on a frequently used axonometric projection ob
tained on a plane parallel to the V plane. If the plane of axonometric pro
jections P is parallel to the V plane, then the direction of projecting should 
not be chosen to be parallel to the W plane, since the projections of the coor
dinate axes will occupy a position in which the axonometric representation 
loses its obviousness. The direction of projecting should be chosen so that the 
projections of the coordinate axes on the plane P are arranged as is shown in 
Fig. 480. In this case line segments along the x- and z-axes, as well as the 
angle xOpz, are projected without distortion. Thus, the distortion factors 
along the axes Opx and Opz on the plane P are equal to unity. As far as the 
y-axis is concerned, the dist ortionfactor along this axis may have various 
values, unity included. In the latter case we shall have an oblique isometric 
projection. If the distortion factor along the axis Opy is not equal to unity, 
then the oblique axonometric projection on the plane P will be dimetric.

A line segment OOp parallel to the direction of projecting and line seg
ments Oy and 0 \y  define the right-angled triangle OyOi (the angle OyO\ 
is a right one). Indeed, the line segment Oy is perpendicular to the V plane;



358 DESCRIPTIVE GEOMETRY

p
\

Z 1
A

Z
__Qi

/ ° *
A i \ \

/A
Fig. 480

and since the plane P is parallel to the plane K, the plane P is perpendicular 
to Oy. Revolving the triangle OyO\ about the leg Oy, we can obtain various 
positions of the point 0 \  on the plane P. In all its positions the point 0\ 
is equidistant from the y-axis, hence, the geometric locus of positions of the 
point 0 \  will be a circle of radius yO i described from point y as centre. 
Figure 480 (right) shows two such positions: 0 \  and <92; either of the points 
Oi and 0 2 serves as the origin of the axes of which the x- and z-axes preserve 
their directions, and the y-axis changes its direction thus changing the angle 
between the axonometric axes x and y. This causes a change in the direction 
of projecting (see the directions of the line segments 0 0 \  and OO2). The 
angle a may be chosen arbitrarily.

On the other hand, if on the plane P the origin is taken at point O3 on 
the line segment yO 1, i.e. if we take the direction of projecting to be parallel 
to the direction of the line segment 0 0  3, then the magnitude of the angle ocj
remains unchanged, while the ratio is not equal to the ratio . This
ratio represents the distortion factor along the y-axis. Consequently, in 
order to get a most descriptive representation, we may arbitrarily choose 
both the value of the distortion factor along the y-axis, and the magnitude 
of the angle a.

The oblique axonometric projection in question, i.e. on a plane parallel 
to the V plane, is called the vertical projection, as also the frontal projection. 
Use is frequently made of the vertical projection in which the distortion fac
tor along the y-axis is chosen to be equal to 0.5, and the angle a is taken to 
be equal to 45°. Such projection is sometimes called the cabinet projection.

Figure 481 shows a cube represented in cabinet projection. The front 
face of the cube repeats the projection on the V plane, therefore a circle 
inscribed in this face will remain a circle in the cabinet projection. From this 
fact we may draw a conclusion that the cabinet projection, being a very simple 
and obvious method for representing geometric solids with rectilinear 
contours, is also convenient for constructing representations when we deal
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with circles located in planes parallel to the axonometric plane of projections,
i.e. parallel to the V plane.

If it is required to represent in the cabinet projection a circle contained 
in a plane parallel to the H or W plane, then we inscribe this circle in a square, 
construct a parallelogram which is a cabinet projection of this square. 
Then we mark a number of points on the circle and construct their projec
tions. They will be situated on an ellipse into which the circle is projected.

Figure 482 shows the construction of the points belonging to the ellipse 
which is the projection of a circle located in a plane parallel to the H  plane. 
First of all the circle is inscribed in a square, and the projection of this square 
is constructed. Here the diameter AC preserves its length and direction (points 
a and c are obtained); diameter BD perpendicular to AC will occupy a posi
tion at an angle of 45° to ac reducing to half its length (points b and d). 
The chords MQ and NP obtained by drawing the diagonals of the square 
give another four points (m, q, w, /?), where

NP  , up =  ——  , ok =  OK.

Furthermore, an arbitrary line segment OR is taken and laid off in the direc
tion oa; through the point r a line segment st is drawn parallel to bd and 
equal to S T : 2. Thus, two more points (s and t) are obtained for the required 
ellipse. Proceeding in a similar way, we can find a number of points through 
which the required ellipse passes.

The projection of a circle contained in a plane parallel to the W plane 
constructed in an analogous manner.
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Let us also consider the case of an oblique axonometric projection when 
the plane of axonometric projections is parallel to the H plane (Fig. 483). 
With the plane P so arranged, the angle xOpy is equal to 90°. As to the z-axis 
obtained on the plane P, the distortion factor along this axis is expressed 
by the ratio Opz : Oz (the line segments Opz and Oz represent the legs of the 
right-angled triangle OzOp with a right angle at point z). In the cases when 
such an oblique axonometric projection is used, the direction of projecting 
is taken at an angle of 45° to the plane P (or to the H  plane). As is obvious, 
the segment Opz is equal to Oz, i.e. the distortion factor along the z-axis is 
equal to unity, and the projection itself turns out to be isometric.

QUESTIONS TO CHAPTER 12

1. What does the method of axonometric projection consist in ?
2. What are the distortion factors?
3. What is the secondary projection of a point?
4. How is the transition from rectangular to axonometric coordinates 

carried out?
5. What is the essence of the basic statement of axonometry (or the basic 

theorem of axonometry)?
6 . In what cases is axonometric projection called: (a) isometric, (b) 

dimetric, (c) trimetric?
7. What is the difference between an oblique and a rectangular axono

metric projection ?
8 . What line is the contour of the axonometric projection of a sphere:

(a) oblique, (b) rectangular?
9. What is the sum of the squares of the distortion factors equal to for a 

rectangular axonometric projection ?
10. What are the distortion factors in a rectangular projection: (a) iso

metric, (b) dimetric (with the ratio 1 : 0.5 : 1), and what are these factors in 
the reduced (to unity) form?
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11. What is the triangle of traces and what conclusions may be drawn 
from it in rectangular axonometric projections?

12. How are the axes constructed in rectangular projections: (a) isometric,
(b) dimetric (1 : 0.5 : 1)?

13. How do we determine the direction and length of the minor axis of 
an ellipse representing an isometric or dimetric projection of a circle con
tained in : (a) an oblique plane, (b) vertical and horizontal projecting planes,
(c) a vertical, horizontal, and profile planes?

14. In what cases may a rectangular axonometric projection of a circle 
turn out to be a line segment or a circle?

15. How do we determine the coordinates of points specified in a rectan
gular axonometric projection on the surface of: (a) a sphere, (b) a cylinder 
of revolution, (c) a cone of revolution?

16. What oblique axonometric projection is called: (a) the vertical (or 
frontal projection), (b) the cabinet projection?



APPENDIX

Sec. 76. Affine Correspondence and Its Application to the 
Solution of Some Problems

We are going to consider affine correspondence of figures located in two 
intersecting planes or in one plane in the system of parallel projection.

In Figure 484 points A i and Bi contained in the plane T  are parallel pro
jected on the plane P in the direction indicated by an arrow. The projecting 
lines A\Az and B\B2 define the projecting plane which intersects the planes 
T  and P along straight lines CBx and CB2 converging on the line MN  at 
point C.

If we take a straight line AfiS^ in the plane T, then, when extended, the 
projection of this line on the plane P will meet the line AiBx on the line of 
intersection of the planes T  and P.

Parallel projection of points belonging to the plane T  on the plane P 
establishes correspondence between these planes: to the point A\ of the 
plane T  there corresponds a point A 2 of the plane P, to the point B± a point 
B2, and so on. This correspondence possesses the following basic properties:

(1 ) to every point of one plane there corresponds a unique point of the 
other plane (one-to-one correspondence);

(2 ) if on a straight line located in one plane there was established the 
presence of two points corresponding to the points of a straight line of the 
other plane, then these lines correspond to each other, and to every point of 
one of these lines there corresponds a definite point of the other line;

(3 ) a straight line of one plane intersects with the corresponding straight 
line of the other plane at a point lying on the line of intersection of the 
planes*;

♦If these lines are parallel to the line o f intersection of the planes, then the point of 
intersection of the straight lines is a point at infinity.
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(4) the straight line along which the planes intersect corresponds to
itself; #

(5) if straight lines of one plane are parallel to each other then the corres
ponding straight lines of the second plane are parallel to each other;

(6 ) the ratio of two line segments in one plane lying on a single straight 
line or on parallel lines is equal to the ratio of the corresponding line seg
ments of the other plane.

The considered correspondence between two planes possessing the above 
listed properties is called perspective-affine correspondence*. In Figure 484 
the points A 2 and B 2 are affine to the points A\ and B\. straight line A 2B 2 

is affine to the straight line AiBi.
If we take in the plane T  a figure and in the plane P consider the points 

affine to all the points of this figure, then the points on the plane P yield a 
figure affine to the figure taken in the plane T.

The line MN  of intersection of the planes is called the affine axis.
The left-hand picture of Fig. 485 shows the same planes in a coincident 

position: by revolving about the straight line MN , the plane T  is brought 
into coincidence with the plane P. If the direction of revolution is reversed, 
then the coincident planes will be arranged as is shown in the right-hand 
picture of the same figure.

If between two planes T  and Pin space there was established affine corres
pondence, then, after these planes are brought into coincidence (Fig. 485), 
this correspondence between their points, straight lines, and figures will be 
preserved with all the properties of the relationship established in parallel 
projecting. Indeed, in both cases to a straight line there corresponds a straight 
line, to a point on one of straight fines there corresponds an affine point on

f CV4 CAthe other, the ratio -A- J  remains equal to the ratio 2 , and parallelism
of the projected lines AiA 2 and BiB2 (Fig. 484) turns [into parallelism of the 
straight lines A\A 2 and B\B2 in Fig. 485 after the planes are brought 
into coincidence.

Hence, irrespective of whether affine fines are considered in space or in 
coincident planes, affine lines intersect on the affine axis and points corres
ponding to each other lie on parallel lines.

The direction of the line A\A 2 is no longer the direction of projection 
(as in Fig. 484); we shall call it the affine direction.

If in the drawing of two coincident planes we are given an affine axis 
and two affine points, then for every other point of this correspondence we 
can find an affine point. Suppose (Fig. 486) the fine MN  is the affine axis, 
A\ and A 2 are affine points, and, consequently, A\A 2 is the affine direction. 
It is required to find an affine point for the point B2.

♦Perspective-affine correspondence is a special case of affine correspondence of  
two planes studied in higher geometry. Affinis (Latin) means ‘adjacent’, ‘neighbouring’; 
affinitas—‘relationship’, ‘property’.
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Fig. 486 Fig. 487
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Proceed as follows: Draw a straight line B 2A 2 to intersect M N ; through 
the points C and A\ draw a straight line on which the point B \  affine to B 2 

is found by drawing a straight line B 2JB1 parallel to A 2A\.
Knowing how to construct affine points, we can construct a figure affine 

to a given one.
If a given figure is a polygon, then the figure affine to it is also a polygon 

with the same number of sides. To construct this polygon, it is sufficient to 
find the points affine to the vertices of the given polygon and to join them 
with rectilinear segments. If we are given a curvilinear figure, then the affine 
figure is constructed by a number of its points; through the points thus 
obtained a smooth curve is drawn.

Examining the figure affine to the given one, we note that in the general 
case the magnitudes of angles are not preserved (see, for instance. Fig. 491: 
the angles of the quadrilateral abed are not equal to the corresponding angles 
of the affine quadrilateral A 0B 0C o D o ) .

But with the given affine axis MN  (Fig. 487), to the pair of affine points 
Ai and A 2 and to the pair of affine straight lines A\M\ and A 2M i passing 
through these points, we can construct another pair of affine lines A 1N 1 
and A 2Ni so that the angle M 1A 1N 1 will be equal to the angle M 1A 2N 1. From 
the point A 2 a perpendicular is dropped onto the line MN, and a point A 3 
is constructed so that A 2K = KA2. Through the points A 1, A 3 , and Afi a 
circle is drawn which intersects the line MN  at point N\. The further con
structions are obvious from the drawing.

In an affine correspondence of two planes specified by the axis and two 
affine points A\ and A 2 it is possible to construct two mutually perpendicular 
directions of one of the planes corresponding to two mutually perpendicular 
directions of the other plane. Such directions are called principal in the given 
affine correspondence. The relevant construction is given in Fig. 488. The 
line segment AiA 2 is bisected at point K, and of this point a perpendicular 
to A\A 2 is erected to intersect MN  at point C. From the point C as centre a 
circle is described through the points A 1 and A 2. As a result, two pairs of 
affine straight lines are obtained: A\M  and A 2M, A{N and A 2N. M A \N and 
M A2N  are right angles.

A figure that is affine (or affine-corresponding) to a circle is, generally, 
an ellipse. In this case mutually perpendicular diameters of the circle are 
transformed into conjugate diameters of the ellipse.

Figure 489 represents the affine axis MN  and two affine points C1 and 
C2, the former point being the centre of the given circle. The affine direction 
CiC2 is arranged perpendicular to the axis. A figure affine to the circle is 
constructed, i.e. an ellipse with centre at C2. The semi-axes A 2C2 and B2C2 

of the ellipse are obtained as straight lines affine to two mutually perpen
dicular radii A\C\ and B 1C1. In this case the right angle A 2IC2K  affine to the 
right angle AxC\K is obtained by drawing a straight line A 2C 2 parallel to 
MN, since C\A\ is parallel to MN.

Figure 490 illustrates the construction of the semi-axes A 2IC2 and B2C2 

of an ellipse affine to a circle with centre at C\ when the affine direction C 1C2
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is not perpendicular to the affine axis. An auxiliary construction (as in Fig. 
488) is applied to find the principal directions MC1 and NC±9 MC2 and 
NC2 which determine the directions of the mutually perpendicular diameters 
of the circle that are transformed into the axes of the ellipse (Fig. 490 shows 
only the construction of the semi-axes A 2/C2 and B2C2).

If we take an oblique plane in the system of planes F, H, and W, then 
between the plane P and each of the projection planes there exists the above 
mentioned affine correspondence, since orthogonal projection is a particular 
case of parallel projection. Then the traces of the plane P will serve as affine 
axes: the trace Ph for the planes P and H, the trace Pv for the planes P and 
F, and the trace Pw for the planes P and W. A straight line located in the 
plane P and each of its projections intersect on the corresponding traces of 
the plane, i.e. on the affine axes.
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Figure 491 demonstrates the construction of a quadrilateral A0B0C0D0 

(its true size) as a figure affine to the projection abed. The trace Ph of the 
vertical projecting plane in which the given quadrilateral is situated serves 
as the affine axes, the affine direction being perpendicular to Ph. First we 
find in a usual way (applying the coincidence method) point Co which is 
affine to the point c, and then construct the points A0, B09 D0 according to 
the scheme given in Fig. 486.

Figure 492 shows that between the horizontal and vertical projections of 
any plane figure (in this case of a triangle) there exists affine correspondence.

First of all we note that the straight lines joining pairwise the points a and 
a\ b and b\ c and c' are parallel. Then we have to establish that any two 
straight lines corresponding to each other intersect on one and the same 
straight line. Let us extend the straight lines ab and a!b' until they intersect 
with each other. The point m2 represents at the same time the horizontal
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and vertical projections of the point belonging to the straight line AB in 
space. The coincidence of the projections testifies to the fact that this point 
is equidistant from the planes H  and V.

The same may be said about the points mi and m2. The fact that the 
points are equidistant from the planes H  and V allows us to conclude that 
these points, belonging to the plane of the triangle ABC, are at the same time 
located in the plane bisecting the second and fourth quadrants.

In Figure 492 this plane is represented by the trace Qw. Since the points 
under consideration must simultaneously belong to two planes, i.e. to the 
plane Q and to the plane of the triangle ABC, it is obvious that they must 
lie on the line of intersection of the plane containing the triangle ABC with 
the plane Q. Being contained in the plane bisecting the second and fourth 
quadrants, this line will be represented on the planes H  and V by one and 
the same straight line (the horizontal and vertical projections coincide) 
and, consequently, the points m l9 m2 and w3 are collinear, i.e. they are locat
ed on a single line which serves as an affine axis. The projections of any 
straight line lying in the plane of the triangle ABC intersect on the found 
affine axis*.

Thus, the projections abc and a'b'c' are affine to each other; the affine 
direction is perpendicular to the x-axis, and the affine axis is arranged at 
some angle to the x-axis. If the plane containing the given figure passes 
through the x-axis, then the affine axis of the horizontal and vertical pro
jections coincides with the x-axis.

For the horizontal and vertical projections of all the figures contained 
in one and the same plane a common affine axis is obtained. Indeed, this 
axis represents the coincident horizontal and vertical projections of the 
line of intersection of some plane with a constant plane Q (Fig. 492).

In Figure 493 affine correspondence is used to construct the horizontal 
projection of a quadrilateral, provided its vertical projection a'b'c'd' and 
the horizontal projections of three vertices (points a, h, c) are known.

First of all we find the points mi and m2 thus determining the affine axis. 
Then we extend the straight line a'd' to intersect the affine axis and join the 
point w3 thus obtained to the point a with a straight line.

The required point d is obtained as the intersection of the line am$ with 
the line of recall d'd. To complete the construction, we join a to d, and c to 
d with straight lines.

The left-hand drawing of Fig. 494 demonstrates how affine correspon
dence is applied to find the projections of the point of intersection of the 
line EF with the plane specified by two parallel lines AB and CD.

The problem is reduced to finding on the straight lines ef and e'f' the 
points affine to each other in the given affine correspondence. This corres
pondence is defined by any two affine points (in Fig. 494 points g and g'

♦If a straight line lies in the plane containing the triangle ABC  and is parallel to the 
affine axis, then it intersects the latter at infinity, both its projections being parallel to the 
affine axis.
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are taken) and affine axis drawn through the points mi and m2 found as the 
intersections of the lines ab and a'b\ cd and c'df. If then we construct a 
straight line affine to e 'f\  this will mean that in the plane specified by the 
lines AB and CD we have drawn a new straight line contained at the same 
time in one plane with the given line EF (a common vertical projection

A straight line affine to e’f  is constructed in the following way: making 
use of affine points g and g' and an arbitrarily chosen point V on the line 
e 'f\  we construct the point i affine to the point We then find the point 
m3 and through this point and point i draw a straight line, thus determining 
the line affine to the line e'f'. The only thing which is left is to mark the 
point k  at which the lines imz and ef intersect each other. This point k is 
the horizontal projection of the required point of intersection.

The right-hand drawing of Fig. 494 shows the solution of the same prob
lem, but using the method set forth in Sec. 25: we pass a plane S  through 
the straight line EF, construct the line with the projections 1'2' and 7-2, 
along which the plane S  intersects the given plane, and then obtain the pro-
24-23012
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Fig. 496
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jection k  of the required point; knowing k, w^get the projection k'. This 
construction is simpler as compared with the left-hand drawing.

But in the example given in Fig. 495 the use of affine correspondence 
makes it possible to construct the axes of the ellipse (which was not done in 
Figs. 364-366 in Sec. 56) without resorting to transition from its conjugate 
diameters to axes.

Without explaining how a number of points of the ellipse (representing 
the vertical projection of the plane section of a cylinder) are found (this 
was done in Sec. 56), we shall dwell here only on the construction of the 
axes of the ellipse.

The projections of the section figure—an ellipse and a circle—are affine 
to each other with the affine direction perpendicular to the x-axis. The affine 
axis (a straight line MN) is constructed with the aid of the projections k'o' 
and ko which are affine to each other in the same correspondence and also, 
say, the trace Pv and x-axis: finding the point Jc and drawing through it and 
through Px a straight line, we get the affine axis. Now, using the method 
shown in Fig. 490, we find mutually perpendicular directions for the vertical 
projection No' and Mo' and for the horizontal projection No and Mo. Using 
the points 3 and 4, we find the vertices 3' and 4' of the ellipse on its major axis 
and making use of the points 5 and 6, the vertices 5' and 6' on the minor axis.

Figure 496 illustrates the intersection of an oblique cone with a plane 
specified by two intersecting lines AB and BC.

The affine axis, which together with a pair of affine points, say, a and 
a \ defines an affine correspondence, passes through the points m\ and m2 
of intersection of the projections ab and a'b\ be and b'c'. The affine direction 
is perpendicular to the x-axis.

Since the required section of the cone will be located in the plane defined 
by the lines AB and BC, the problem is reduced to finding on the projections 
of the cone a number of pairs of affine points in the given correspondence.

Now we construct the point .yi affine to the point s' (with the aid of a pair 
of affine points d and d' and point m2 on the affine axis).

If we extend the vertical projections of a number of elements of the cone 
to intersect the affine axis at points m 9 n29 773, and so on, and then join all 
these points to the point with straight lines, we shall determine a number 
of straight lines situated in the given plane. The projections of these lines 
are affine to each other.

Taking the point of intersection of the horizontal projection of a generat
ing element with the horizontal projection smi, Sin2, etc. which is\ affine to 
the vertical projection of this element, we get the horizontal projection of a 
point belonging to the section figure cut off the cone by the given plane. For 
instance, the point k is obtained as the intersection of the lines s&i and si; 
let us now find the corresponding vertical projection k \  Hence, we have 
found the point K which lies on one of the elements of the cone and at the 
same time is located in the given plane.

Finding a number of points in a similar manner, we may construct the 
ellipses representing the projections of the section figure.
24*
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QUESTIONS TO SEC. 76

1. What are the basic properties of the correspondence between two 
intersecting planes in parallel projecting?

2. How is such correspondence called?
3. What are the affine axis and affine direction?
4. What directions are called principal in a given affine correspondence?
5. What figure is affine to a circle?
6. How do we construct the axes of an ellipse affine to a given circle when 

the affine direction is not perpendicular to the affine axis?
7. How do we prove that between the vertical and horizontal projections 

of any plane figure there exists affine correspondence?
8. In what case does the affine axis of the vertical and horizontal projec

tions of a plane figure coincide with the projection axis V/Hl
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A
Abscissa, 22
Additional systems of projection planes, 28
Affine correspondence, 362
Angle(s)

between a line and a plane, 106-107 
between a straight line and a projection plane, 42 
between two planes, 106-108 
dihedral, bisector plane of, 30 
plane, 50 
projections of, 50 
trihedral, 22, 150 

Annular torus, 214 
Archimedes, spiral of, 191, 221 
Axis(es)

axonometric, 327 
coordinate, 22 
of ellipse, 77 
of projection, 17 
*-, 17 
y-, 19 
z-, 19

Axonometric projection(s) 326 
dimetric, 331 
isometric, 331 
oblique, 331, 357 
rectangular, 331 
trimetric, 331 

Axonometry, 326 
basic theorem of, 331

B

Bernoulli, J., 262 
Binormal, 183 
Biquadratic, 293 
Bisector plane, 71

circular, 198 
elliptic, 198 
oblique, 198 
of revolution, 211, 219 
right, 198 
right circular, 211 
of second order, 198 

Conical surface, 195 
cut by a plane, 246 

Conoid, 200, 219 
annual helical, 219 

Constructing traces of a plane, 56 
Contour, 150 
Conusoid, 206 
Coordinate axis, 22 
Coordinate parallelepiped, 22 
Coordinate(s), 22 

axonometric, 328 
Cartesian, 22 
rectangular, 22 
rectangular Cartesian, 22 

Cosines, direction, 332 
Curve(s) 

algebraic, 176 
biquadratic, 299 
Perseus’, 261 
plane. 178 
space, 182-183 

Curved line(s), 175 
curvature of, 177 

Curved surfaces, 192 
Cusp(s) 

double, 179 
of the first kind, 179 
of the second kind, 179 

Cylindrical surface cut by a plane, 239 
Cylindroid, 200 

helical, 220

D
C

Cassini, J. D., 262 
Catenary, 215 
Catenoid, 215 
Central projection, 10 
Centre of projection, 11 
Centroid of a triangle, 75 
Chetverukhin, N. F., 330 
Circumcentre of a triangle, 75 
Coincidence method, 110 
Cone(s)

Descartes, R., 22 
Descriptive geometry, 9, 15 
Developable surfaces, 194 
Developments, 240

of cones and cylinders, 315-318 
of faced surfaces, 170 
of the sphere, 319 

Direction cosines, 332 
Direction factor, 327 
Directrix(ces), 193 
Double contact, 283 
Drawings without axes of projection, 30
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E

Edge, cuspidal, 199 
Elevation(s) 

negative, 17 
positive, 17 

Ellipse(s) 
axes of, 77 
centre of, 78
conjugate diameter of, 78 
diameter of, 78 
homothetic, 198 
vertices of, 78 

Ellipsoid(s) 
contracted, 207 
oblate, 207 
prolate, 207 
of revolution, 213 

Equator, 210 
Evolute, 182

F

Factor, distortion, 327 
Farish, W., 332 
Front view, 158

G

Generating lines, 192 
Generatrix(ces), 192 
Geodetic line, 188 
Geometrical loci, 218 
Geometry, descriptive, 9, 15 
Glazunov, E. A., 330

H
H  parallels, 61 
Helicoid(s) 

oblique annular, 220 
open, 221 
right, 219 

Helix(ces) 
axis of, 185 
conical, 189 
cylindrical, 184 
left-hand, 186 
pitch of, 185 
radius of, 185 
right-hand, 186 

Horizontal lines, 61
Hyperboloid of revolution, 205, 211-212 

of one sheet, 204 
of two sheets, 207

I
Incentre of a triangle, 76 
Intersecting lines, 47 
Intersection 

of a straight line with an oblique plane, 93 
of two planes, 83 

Isometric axonometric projection, 332

J
Joining lines, 367

K
Kinematic surfaces, 192

L
Lead(s) 

of a conical helix, 191 
of a cylindrical helix, 185 
variable, 189

Lemniscate of Bernoulli, 262
Line(s) 

curved, 175 
geodetic, 188 
of the greatest slope, 61 
horizontal, 34, 61 
H  principal, 61 
intersecting, 47
of intersection of two planes, 88, 95 
invisible, 86 
parallel, 46
parallel to one projection plane, 34
parallel to two projection planes, 36
profile, 34
projecting, 11, 36
of recall, 18
skew, 49, 212
vertical, 34, 62
visible, 86
V principal, 61

M

Main view, 159 
Meridian of a surface, 210 

principal, 211 
Method(s) 

of central projections, 11 
coincidence, 110 
Monge’s, 15, 19 
of parallel projection, 15 
of plane-parallel displacement, 127 
of projections, 9 
of projections with elevation, 17 
of replacing projection planes, 110 
of revolution,110 

Monge, G., 15 
Monge’s theorem, 285 
Mutual intersection of two surfaces, 281

N

Nondevelopable surfaces, 193 
Normal plane, 182 
Normal to a surface, 229

o
Oblate ellipsoid, 207 
Oblique projecting, 164 
Octant(s), 22 
Ordinate, 22
Orthocentre of a triangle, 75 
Orthogonal projections, 22 
Outline, 152 
Oval, 261 

of Cassini, 262

P
Paraboloid(s) 

circular, 207 
elliptic, 207 
hyperbolic, 202 
of revolution, 207 
ruled, 202
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Parallel lines, 46
Parallelism of a straight line and a plane, 97 

of two planes, 83 
Parallels, 210 
Penetration, 272
Perpendicular to a plane, 100-104
Pitch, 185, 191
Plane(s)

axonometric, 326 
bisector, 71 
coordinate, 22 
director, 200 
figure, 73 
horizontal, 71 
mutually parallel, 100 
mutually perpendicular, 104 
normal, 182 
oblique, 57, 65 
osculating, 183 
picture, 326 
profile, 71 
projecting, 65 
projection, 17 
rectifying, 183 
vertical, 71 
warped, 202 

Point(s) 
elliptic, 230 
hyperbolic, 232 
of inflection, 179 
invisible, 86 
ordinary, 229 
of osculation, 179 
parabolic, 230 
singular, 229 
visible, 86 

Pole of projection, 11 
Polke, K., 331 
Police’s theorem, 331 
Polyhedron(s), 150-157 

convex, 150
mutual intersection of, 166-170 
projection of, 150-152 

Principal lines of a plane, 58-64 
Prisms cut by a plane or a straight line, 160 
Projecting planes, 65 
Projection(s) 9 

axonometric, 326 
cabinet, 22 
central, 10 
conical, 11 
cylindrical, 12 
with elevation, 17 
horizontal, 17 
oblique, 14, 164 
orthogonal, 14, 157 
parallel, 12 

properties of, 12-14 
polar, 11
rectangular axonometric, 328 
secondary, 328 
vertical, 17 

Projector, 11
Pyramids cut by a plane or a straight line, 160

Q

.  R
Ray, projecting, 17 
Recall, lines of, 18 
Regular line, 176 
Relative positions

of intersecting lines, 47 
of parallel lines, 46 
of skew lines, 49 
of a straight line and a plane, 84 
of two straight lines, 46 

Representation of a point, 9 
Revolution 

axis of, 117 
centre of, 117 
about a chosen axis , 121 
about a given axis, 118 
of a line segment, 118 
of a plane, 121 
plane of, 117 
of a point, 118 
radius of, 117 

Right-handed system of coordinates, 24

s
Saddle, 232 
Schwartz, G., 331 
Screw(s), 224 

double-thread, 228 
single-thread, 228 
with a square thread, 224 
with a triangle thread, 226 

Shukhov, V. G., 213 
Singular points, 229 
Screw lines, 49, 212 
Slope line of a plane, 62 
Sphere 

cut by a plane, 259 
development of, 319 

Spiral of Archimedes, 191, 221 
Surface(s) 

canal, 207 
conical, 195 

vertex of, 195 
curved, 192
with a cuspidal edge, 199 
cylindrical, 195 
developable, 194 
double-curved, 192, 207 
faced, 152 
graphical, 209 
helical, 219 
irregular, 192 
kinematic, 192 
nondevelopable, 193 
prismatic, 197 
projecting, 150 
pyramidal, 197 
regular, 192 
of revolution, 210-218 
ruled, 192 
throat of, 210 
topographical, 209 
trace of, 195 
tubular, 207 
warped, 193 

System of rectangular coordinates, 22

T
Quadrants, 25
Quadrilateral, complete, 330 Theorem(s)
Quarters of space, 25 Monge’s, 285
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Theorem (s)
P o lk e’s, 331 

T h ro a t o f  a  surface, 210 
T orse, 199 
T orus, 214 

an n u la r, 214 
closed, 214 
open, 214
self-intersecting, 214 

Trace(s) 
construction  of, 56-57 
ho rizon ta l, 38 
o f  a  line, 36 
o f  a p lane, 56-57 
profile, 40 
triang le  of, 333 
vertical, 38 

T riang le  o f  traces, 333 
T rue  leng th  o f  a  line segm ent, 131 
T u b u la r surface, 207

View(s) 
bo ttom , 157 
fron t, 157 
le ft-hand , 157 
m ain , 157 
rea r, 157 
righ t-hand , 157 
top , 157 

V iviani, V., 299

w
W arped  cylinder w ith th ree  directrices, 206 
W ays o f  specifying a  p lane  in  th e  draw ing, 55 W parallels, 61 

p rincipal lines, 61

X

u ;c-axis, 17

U nit(s) 
axonom etric , 327 
tru e , 327

Y

jr-axis, 19

V z
V parallels, 61 

p rincipal lines, 61 
V ertical lines, 62

z-axis, 19 
z-coord inate , 22
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